Massberg S, Eisenmenger S, Enders G, Krombach F, Messmer K
Ludwig-Maximilians University, Institute for Surgical Research, Klinikum Grosshadern, Munich, Germany.
Res Exp Med (Berl). 1998 Jul;198(1):23-35. doi: 10.1007/s004330050086.
Impairment of intestinal nutritive perfusion and accumulation of inflammatory cells in the intestinal microvasculature are well-known sequelae of mesenteric ischemia/reperfusion, sepsis, and shock. However, the molecular mechanisms underlying these alterations are still not fully understood. The mouse is particularly suitable for the study of these mechanisms since in this species the involvement of, for example, adhesion receptors or pro-/anti-adhesive mediators can be selectively investigated by the use of monoclonal antibodies or gene-targeted strains. The aim of our present study was, therefore, to establish a model to investigate the microcirculation in the mouse small intestine. Under anesthesia by inhalation of isoflurane-N2O, Balb/c mice (n = 16) were laparotomized, and a segment of the jejunum was exteriorized for intrvital fluorescence microscopy. Using FITC-dextran (MW 150,000) as a plasma marker, functional capillary density (FCD) of both the intestinal mucosa and muscle layer was analyzed. Nutritive perfusion was homogeneous in both compartments with values for FCD of 512 +/- 15 cm-1 in mucosa and 226 +/- 21 cm-1 in the muscle layer. No significant changes were observed throughout the observation period of 2 h (FCD values at the end of the observation period: 524 +/- 31 cm-1 and 207 +/- 7 cm-1 in mucosa and muscle, respectively). Besides capillary perfusion, leukocyte-endothelial cell interaction was analyzed in postcapillary venules of the intestinal submucosa using rhodamine-6G as an in vivo leukocyte stain. Under physiological conditions only a few white blood cells were found rolling along or firmly adherent to the microvascular endothelium (number of rolling leukocytes 1 +/- 0.2 cells/mm per second; number of adherent leukocytes: 18 +/- 7 cells/mm2). In a separate group rhodamine-6G-labeled syngeneic platelets were infused to analyze platelet-endothelial cell interactions quantitatively in vivo. Platelets rolled along or attached to the endothelium in a manner similar to leukocytes. However, in contrast to leukocytes the interactions were not restricted to venules, but were also observed in small arterioles. The newly established model allows for the visualization and quantitative assessment of both nutritive perfusion and platelet/leukocytendothelial cell interactions within the distinct layers of the mouse small intestine. Using this model in combination with gene-targeted mice or monoclonal antibodies it is possible to investigate the molecular mechanisms of intestinal inflammation reactions.
肠营养灌注受损以及肠微血管中炎症细胞的积聚是肠系膜缺血/再灌注、脓毒症和休克的常见后遗症。然而,这些改变背后的分子机制仍未完全明确。小鼠特别适合用于研究这些机制,因为在这个物种中,可以通过使用单克隆抗体或基因靶向品系来选择性地研究例如黏附受体或促/抗黏附介质的作用。因此,我们当前研究的目的是建立一个模型来研究小鼠小肠中的微循环。在吸入异氟烷 - N₂O麻醉下,对16只Balb/c小鼠进行剖腹手术,将一段空肠外置用于活体荧光显微镜检查。使用异硫氰酸荧光素 - 葡聚糖(分子量150,000)作为血浆标志物,分析肠黏膜和肌层的功能性毛细血管密度(FCD)。两个区域的营养灌注均一,黏膜FCD值为512±15 cm⁻¹,肌层为226±21 cm⁻¹。在2小时的观察期内未观察到显著变化(观察期末黏膜和肌层的FCD值分别为524±31 cm⁻¹和207±7 cm⁻¹)。除了毛细血管灌注外,使用罗丹明 - 6G作为体内白细胞染色剂,分析肠黏膜下层毛细血管后微静脉中的白细胞 - 内皮细胞相互作用。在生理条件下,仅发现少数白细胞沿微血管内皮滚动或牢固黏附(滚动白细胞数量为每秒1±0.2个细胞/mm;黏附白细胞数量为18±7个细胞/mm²)。在另一组中,输注罗丹明 - 6G标记的同基因血小板以在体内定量分析血小板 - 内皮细胞相互作用。血小板以与白细胞相似的方式沿内皮滚动或附着。然而,与白细胞不同的是,这种相互作用不仅限于微静脉,在小动脉中也可观察到。新建立的模型能够对小鼠小肠不同层内的营养灌注以及血小板/白细胞 - 内皮细胞相互作用进行可视化和定量评估。将该模型与基因靶向小鼠或单克隆抗体结合使用,可以研究肠道炎症反应的分子机制。