Suppr超能文献

稀有气体和氮气如何与麻醉作用的模型位点结合的分子描述。

A molecular description of how noble gases and nitrogen bind to a model site of anesthetic action.

作者信息

Trudell J R, Koblin D D, Eger E I

机构信息

Department of Anesthesia, Program for Molecular and Genetic Medicine, Stanford School of Medicine, California, USA.

出版信息

Anesth Analg. 1998 Aug;87(2):411-8. doi: 10.1097/00000539-199808000-00034.

Abstract

UNLABELLED

How some noble and diatomic gases produce anesthesia remains unknown. Although these gases have apparently minimal capacities to interact with a putative anesthetic site, xenon is a clinical anesthetic, and argon, krypton, and nitrogen produce anesthesia at hyperbaric pressures. In contrast, neon, helium, and hydrogen do not cause anesthesia at partial pressures up to their convulsant thresholds. We propose that anesthetic sites influenced by noble or diatomic gases produce binding energies composed of London dispersion and charge-induced dipole energies that are sufficient to overcome the concurrent unfavorable decrease in entropy that occurs when a gas molecule occupies the site. To test this hypothesis, we used the x-ray diffraction model of the binding site for Xe in metmyoglobin. This site offers a positively charged moiety of histidine 93 that is 3.8 A from Xe. We simulated placement of He, Ne, Ar, Kr, Xe, H2, and N2 sequentially at this binding site and calculated the binding energies, as well as the repulsive entropy contribution. We used free energies obtained from tonometry experiments to validate the calculated binding energies. We used partial pressures of gases that prevent response to a noxious stimulus (minimum alveolar anesthetic concentration [MAC]) as the anesthetic endpoint. The calculated binding energies correlated with binding energies derived from the in vivo (ln) data (RTln[MAC], where R is the gas constant and T is absolute temperature) with a slope near 1.0, indicating a parallel between the Xe binding site in metmyoglobin and the anesthetic site of action of noble and diatomic gases. Nonimmobilizing gases (Ne, He, and H2) could be distinguished by an unfavorable balance between binding energies and the repulsive entropy contribution. These gases also differed in their inability to displace water from the cavity.

IMPLICATIONS

The Xe binding site in metmyoglobin is a good model for the anesthetic sites of action of noble and diatomic gases. The additional binding energy provided by induction of a dipole in the gas by a charge at the binding site enhanced binding.

摘要

未标注

一些惰性气体和双原子气体如何产生麻醉作用仍然未知。尽管这些气体与假定的麻醉位点相互作用的能力显然极小,但氙是一种临床麻醉剂,而氩、氪和氮在高压下会产生麻醉作用。相比之下,氖、氦和氢在分压达到惊厥阈值时不会引起麻醉。我们提出,受惰性气体或双原子气体影响的麻醉位点产生的结合能由伦敦色散能和电荷诱导偶极能组成,这些能量足以克服当气体分子占据该位点时同时发生的不利的熵减少。为了验证这一假设,我们使用了高铁肌红蛋白中氙结合位点的X射线衍射模型。该位点提供了一个带正电荷的组氨酸93部分,距离氙为3.8埃。我们模拟了氦、氖、氩、氪、氙、氢气和氮气依次在该结合位点的放置,并计算了结合能以及排斥熵贡献。我们使用从张力测定实验获得的自由能来验证计算出的结合能。我们将防止对有害刺激产生反应的气体分压(最低肺泡麻醉浓度[MAC])用作麻醉终点。计算出的结合能与从体内(ln)数据得出的结合能(RTln[MAC],其中R是气体常数,T是绝对温度)相关,斜率接近1.0,表明高铁肌红蛋白中的氙结合位点与惰性气体和双原子气体的麻醉作用位点之间存在平行关系。非固定性气体(氖、氦和氢气)可以通过结合能与排斥熵贡献之间的不利平衡来区分。这些气体在无法从腔中置换出水方面也有所不同。

启示

高铁肌红蛋白中的氙结合位点是惰性气体和双原子气体麻醉作用位点的良好模型。结合位点处的电荷在气体中诱导偶极所提供的额外结合能增强了结合作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验