Kampranis S C, Maxwell A
Department of Biochemistry, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.
J Biol Chem. 1998 Aug 28;273(35):22606-14. doi: 10.1074/jbc.273.35.22606.
We have used limited proteolysis to identify conformational changes in DNA gyrase. Gyrase exhibits a proteolytic fingerprint dominated by two fragments, one of approximately 62 kDa, deriving from the A protein, and another of approximately 25 kDa from the B protein. Quinolone binding to the enzyme-DNA complex induces a conformational change which is reflected in the protection of the C-terminal 47-kDa domain of the B protein. An active site mutant (Tyr122 to Ser in the A protein) that binds quinolones but cannot cleave DNA still gives the quinolone proteolytic pattern, while stabilization of a cleaved-DNA intermediate by calcium ions does not reveal any protection, suggesting that the quinolone-induced conformational change is different from an "open-gate" state of the enzyme. A quinolone-resistant mutant of gyrase fails to give the characteristic quinolone-associated proteolytic signature. The ATP-induced dimerization of the B subunits is a key step of the gyrase mechanism. The proteolytic fingerprint of this conformation (stabilized by the non-hydrolyzable ATP analog 5'-adenylyl-beta, gamma-imidodiphosphate (ADPNP) shows a protection of the 43-kDa N-terminal domain of the B subunit. The presence of quinolones does not prevent dimerization since incubation of the enzyme-DNA complex with both ADPNP and quinolones gives rise to a complex whose proteolytic pattern retains the characteristic signature of dimerization but has lost the quinolone-induced protection. As a result, the quinolone-gyrase complex can still hydrolyze ATP, albeit with different kinetic characteristics. We interpret the proteolytic signatures observed in terms of four complexes of gyrase, each representing a particular conformational state.
我们利用有限蛋白酶解来鉴定DNA促旋酶的构象变化。促旋酶呈现出一种蛋白酶解指纹图谱,主要由两个片段组成,一个约62 kDa,源自A蛋白,另一个约25 kDa源自B蛋白。喹诺酮与酶 - DNA复合物的结合会诱导构象变化,这反映在B蛋白C末端47 kDa结构域受到保护。一个结合喹诺酮但不能切割DNA的活性位点突变体(A蛋白中的Tyr122突变为Ser)仍然呈现喹诺酮蛋白酶解模式,而钙离子对切割的DNA中间体的稳定作用并未显示出任何保护作用,这表明喹诺酮诱导的构象变化不同于酶的“开放门”状态。促旋酶的喹诺酮抗性突变体未能给出与喹诺酮相关的特征性蛋白酶解特征。ATP诱导的B亚基二聚化是促旋酶作用机制的关键步骤。这种构象(由不可水解的ATP类似物5'-腺苷-β,γ-亚氨二磷酸(ADPNP)稳定)的蛋白酶解指纹图谱显示B亚基43 kDa的N末端结构域受到保护。喹诺酮的存在并不妨碍二聚化,因为将酶 - DNA复合物与ADPNP和喹诺酮一起孵育会产生一种复合物,其蛋白酶解模式保留了二聚化的特征性特征,但失去了喹诺酮诱导的保护作用。因此,喹诺酮 - 促旋酶复合物仍然能够水解ATP,尽管具有不同的动力学特性。我们根据促旋酶的四种复合物来解释观察到的蛋白酶解特征,每种复合物代表一种特定的构象状态。