Suppr超能文献

多形汉逊酵母中的硝酸盐还原及Nit-突变体的分离

Nitrate reduction and the isolation of Nit- mutants in Hansenula polymorpha.

作者信息

Pignocchi Cristina, Berardi Enrico, Cox Brian S

机构信息

Laboratorio di Genetica Microbica, Dipartimento di Biotecnologie Agrarie ed Ambientali, Universit degli Studi di AnconaVia Brecce Bianche, 1-60131 AnconaItaly.

出版信息

Microbiology (Reading). 1998 Aug;144 ( Pt 8):2323-2330. doi: 10.1099/00221287-144-8-2323.

Abstract

Hansenula polymorpha (syn. Pichia angusta) is able to grow on nitrate as sole nitrogen source. Nitrate reductase (NR) assays, optimized in crude extracts from nitrate-grown cells, revealed that NR preferentially used NADPH, but also used NADH, as electron donor and required FAD for maximum activity. NR activity was present in nitrate-grown and nitrite-grown cells, and was absent in cells grown in ammonium, glutamate and methylamine. Addition of reduced nitrogen compounds to nitrate-grown cells led to loss of NR activity, even if added with nitrate. Under nitrogen starvation, NR activity was not observed; however, following growth on nitrate, NR activity is maintained in the absence of nitrate. Increases but not decreases in NR activity were dependent on protein synthesis. Conditions for chlorate selection were optimized, and Nit- (nitrate-) mutants were isolated. Some of these mutants showed reduced or absent NR activity. Sixty-one NR- mutants revealed the monogenic recessive nature of their lesions and were grouped in 10 complementation classes. These mutants will be used in gene cloning experiments aimed at identifying structural and regulatory elements involved in the first step of nitrate reduction.

摘要

多形汉逊酵母(同义词:奥古斯塔毕赤酵母)能够以硝酸盐作为唯一氮源生长。在以硝酸盐培养的细胞的粗提物中优化的硝酸还原酶(NR)测定表明,NR优先使用NADPH,但也使用NADH作为电子供体,并且需要FAD以达到最大活性。NR活性存在于以硝酸盐培养和以亚硝酸盐培养的细胞中,而在以铵、谷氨酸和甲胺培养的细胞中不存在。向以硝酸盐培养的细胞中添加还原态氮化合物会导致NR活性丧失,即使与硝酸盐一起添加也是如此。在氮饥饿条件下,未观察到NR活性;然而,在以硝酸盐生长后,即使不存在硝酸盐,NR活性仍得以维持。NR活性的增加而非降低依赖于蛋白质合成。优化了氯酸盐选择的条件,并分离出了Nit-(硝酸盐-)突变体。其中一些突变体显示出NR活性降低或缺失。61个NR-突变体揭示了其损伤的单基因隐性性质,并被分为10个互补类。这些突变体将用于基因克隆实验,旨在鉴定参与硝酸盐还原第一步的结构和调控元件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验