Suppr超能文献

一种新型大肠杆菌K-12孔蛋白OmpG的生物化学与调控,该蛋白可形成异常大的通道。

Biochemistry and regulation of a novel Escherichia coli K-12 porin protein, OmpG, which produces unusually large channels.

作者信息

Fajardo D A, Cheung J, Ito C, Sugawara E, Nikaido H, Misra R

机构信息

Department of Microbiology, Arizona State University, Tempe, Arizona 85287-2701, USA.

出版信息

J Bacteriol. 1998 Sep;180(17):4452-9. doi: 10.1128/JB.180.17.4452-4459.1998.

Abstract

A novel porin, OmpG, is produced in response to a chromosomal mutation termed cog-192. Molecular characterization of cog-192 revealed that it is a large chromosomal deletion extending from the 3' end of pspA through to the 5' end of an open reading frame located immediately upstream of ompG. As a result of this 13.1-kb deletion, the expression of ompG was placed under the control of the pspA promoter. Characterization of OmpG revealed that it is quite different from other porins. Proteoliposome swelling assays showed that OmpG channels were much larger than those of the OmpF and OmpC porins, with an estimated limited diameter of about 2 nm. The channel lacked any obvious solute specificity. The folding model of OmpG suggests that it is the first 16-stranded beta-barrel porin that lacks the large external loop, L3, which constricts the channels of other nonspecific and specific porins. Consistent with the folding model, circular dichroism showed that OmpG contains largely a beta-sheet structure. In contrast to other Escherichia coli porins, there is no evidence that OmpG exists as stable oligomers. Although ompG DNA was present in all E. coli strains examined so far, its expression under laboratory conditions was seen only due to rare chromosomal mutations. Curiously, OmpG was constitutively expressed, albeit at low levels, in Salmonella, Shigella, and Pseudomonas species.

摘要

一种新型孔蛋白OmpG是由一种名为cog - 192的染色体突变产生的。对cog - 192的分子特征分析表明,它是一个大的染色体缺失,从pspA的3'端延伸到紧邻ompG上游的一个开放阅读框的5'端。由于这个13.1 kb的缺失,ompG的表达置于pspA启动子的控制之下。对OmpG的特征分析表明,它与其他孔蛋白有很大不同。蛋白脂质体膨胀试验表明,OmpG通道比OmpF和OmpC孔蛋白的通道大得多,估计有限直径约为2 nm。该通道缺乏任何明显的溶质特异性。OmpG的折叠模型表明,它是第一个16链β桶状孔蛋白,缺乏限制其他非特异性和特异性孔蛋白通道的大的外部环L3。与折叠模型一致,圆二色性表明OmpG主要包含β片层结构。与其他大肠杆菌孔蛋白不同,没有证据表明OmpG以稳定的寡聚体形式存在。尽管到目前为止在所有检测的大肠杆菌菌株中都存在ompG DNA,但在实验室条件下其表达仅由于罕见的染色体突变才可见。奇怪的是,OmpG在沙门氏菌、志贺氏菌和假单胞菌属中组成性表达,尽管表达水平较低。

相似文献

2
Folding of a monomeric porin, OmpG, in detergent solution.
Biochemistry. 2003 Aug 12;42(31):9453-65. doi: 10.1021/bi0344228.
3
Biochemical and biophysical characterization of OmpG: A monomeric porin.
Biochemistry. 2000 Oct 3;39(39):11845-54. doi: 10.1021/bi001065h.
4
Crystal structure of the monomeric porin OmpG.
J Mol Biol. 2006 Jul 21;360(4):750-9. doi: 10.1016/j.jmb.2006.05.045. Epub 2006 Jun 2.
5
A novel mutation, cog, which results in production of a new porin protein (OmpG) of Escherichia coli K-12.
J Bacteriol. 1989 Aug;171(8):4105-11. doi: 10.1128/jb.171.8.4105-4111.1989.
6
Projection structure of the monomeric porin OmpG at 6 A resolution.
J Mol Biol. 2001 Jan 5;305(1):71-7. doi: 10.1006/jmbi.2000.4284.
7
Purification, Refolding, and Crystallization of the Outer Membrane Protein OmpG from Escherichia coli.
Methods Enzymol. 2015;557:149-66. doi: 10.1016/bs.mie.2015.01.018. Epub 2015 Mar 24.
8
Structural and functional characterization of a synthetically modified OmpG.
Bioorg Med Chem. 2010 Nov 15;18(22):7716-23. doi: 10.1016/j.bmc.2010.03.044. Epub 2010 Mar 25.
9
Manipulation of charge distribution in the arginine and glutamate clusters of the OmpG pore alters sugar specificity and ion selectivity.
Biochim Biophys Acta Biomembr. 2019 Oct 1;1861(10):183021. doi: 10.1016/j.bbamem.2019.07.009. Epub 2019 Jul 13.
10
IR-spectroscopic characterization of an elongated OmpG mutant.
Arch Biochem Biophys. 2015 Jun 15;576:73-9. doi: 10.1016/j.abb.2015.04.010. Epub 2015 May 6.

引用本文的文献

1
The Name Is Barrel, β-Barrel.
Methods Mol Biol. 2024;2778:1-30. doi: 10.1007/978-1-0716-3734-0_1.
2
Cell-sized asymmetric phospholipid-amphiphilic protein vesicles with growth, fission, and molecule transportation.
iScience. 2023 Jan 31;26(3):106086. doi: 10.1016/j.isci.2023.106086. eCollection 2023 Mar 17.
3
Fast slow folding of an outer membrane porin.
Proc Natl Acad Sci U S A. 2022 May 17;119(20):e2121487119. doi: 10.1073/pnas.2121487119. Epub 2022 May 12.
4
Recent advances in biological nanopores for nanopore sequencing, sensing and comparison of functional variations in MspA mutants.
RSC Adv. 2021 Aug 31;11(46):28996-29014. doi: 10.1039/d1ra02364k. eCollection 2021 Aug 23.
5
Inactivation of RNase P in Escherichia coli significantly changes post-transcriptional RNA metabolism.
Mol Microbiol. 2022 Jan;117(1):121-142. doi: 10.1111/mmi.14808. Epub 2021 Sep 25.
6
The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux.
Chem Rev. 2021 May 12;121(9):5597-5631. doi: 10.1021/acs.chemrev.0c01137. Epub 2021 Feb 17.
7
A pH-independent quiet OmpG pore with enhanced electrostatic repulsion among the extracellular loops.
Biochim Biophys Acta Biomembr. 2021 Jan 1;1863(1):183485. doi: 10.1016/j.bbamem.2020.183485. Epub 2020 Oct 13.
8
Structure and Reaction Mechanism of YcjR, an Epimerase That Facilitates the Interconversion of d-Gulosides to d-Glucosides in .
Biochemistry. 2020 Jun 9;59(22):2069-2077. doi: 10.1021/acs.biochem.0c00334. Epub 2020 May 28.
9
Overcoming Iron Deficiency of an Escherichia coli Mutant by Increasing Outer Membrane Permeability.
J Bacteriol. 2019 Aug 8;201(17). doi: 10.1128/JB.00340-19. Print 2019 Sep 1.
10
Discovery of a Kojibiose Phosphorylase in Escherichia coli K-12.
Biochemistry. 2018 May 15;57(19):2857-2867. doi: 10.1021/acs.biochem.8b00392. Epub 2018 Apr 30.

本文引用的文献

1
Chromosomal alterations affecting the regulation of histidine biosynthetic enzymes in Salmonella.
J Mol Biol. 1963 Jul;7:23-42. doi: 10.1016/s0022-2836(63)80016-9.
2
The complete genome sequence of Escherichia coli K-12.
Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
3
The RIB element in the goaG-pspF intergenic region of Escherichia coli.
J Bacteriol. 1997 May;179(10):3095-102. doi: 10.1128/jb.179.10.3095-3102.1997.
4
Active efflux of bile salts by Escherichia coli.
J Bacteriol. 1997 Apr;179(8):2512-8. doi: 10.1128/jb.179.8.2512-2518.1997.
5
Immunochemical structure of the OmpD porin from Salmonella typhimurium.
Microbiology (Reading). 1996 Nov;142 ( Pt 11):3201-10. doi: 10.1099/13500872-142-11-3201.
6
Secondary structure of the outer membrane proteins OmpA of Escherichia coli and OprF of Pseudomonas aeruginosa.
J Bacteriol. 1996 Oct;178(20):6067-9. doi: 10.1128/jb.178.20.6067-6069.1996.
7
Prediction of membrane-spanning beta-strands and its application to maltoporin.
Protein Sci. 1993 Aug;2(8):1361-3. doi: 10.1002/pro.5560020820.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验