Suppr超能文献

A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated.

作者信息

Jegalian K, Page D C

机构信息

Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA.

出版信息

Nature. 1998 Aug 20;394(6695):776-80. doi: 10.1038/29522.

Abstract

Mammalian X and Y chromosomes evolved from an autosomal pair; the X retained and the Y gradually lost most ancestral genes. In females, one X chromosome is silenced by X inactivation, a process that is often assumed to have evolved on a broadly regional or chromosomal basis. Here we propose that genes or clusters common to both the X and Y chromosomes (X-Y genes) evolved independently along a multistep path, eventually acquiring dosage compensation on the X chromosome. Three genes studied here, and other extant genes, appear to be intermediates. ZFX, RPS4X and SMCX were monitored for X inactivation in diverse species by assaying CpG-island methylation, which mirrors X inactivation in many eutherians. ZFX evidently escaped X inactivation in proto-eutherians, which also possessed a very similar Y-linked gene; both characteristics were retained in most extant orders, but not in myomorph rodents. For RPS4X, escape from X inactivation seems unique to primates. SMCX escapes inactivation in primates and myomorphs but not in several other lineages. Thus, X inactivation can evolve independently for each of these genes. We propose that it is an adaptation to the decay of a homologous, Y-linked gene.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验