Peters R J, Shiau A K, Sohl J L, Anderson D E, Tang G, Silen J L, Agard D A
The Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco 94143, USA.
Biochemistry. 1998 Sep 1;37(35):12058-67. doi: 10.1021/bi980883v.
alpha-Lytic protease is encoded with a large (166 amino acid) N-terminal pro region that is required transiently both in vivo and in vitro for the correct folding of the protease domain [Silen, J. L. , and Agard, D. A. (1989) Nature 341, 462-464; Baker, D., et al. (1992) Nature 356, 263-265]. The pro region also acts as a potent inhibitor of the mature enzyme [Baker, D., et al. (1992) Proteins: Struct.,Funct., Genet. 12, 339-344]. This inhibition is mediated through direct steric occlusion of the active site by the C-terminal residues of the pro region [Sohl, J. L., et al. (1997) Biochemistry 36, 3894-3904]. Through mutagenesis and structure-function analyses we have begun to investigate the mechanism by which the pro region acts as a single turnover catalyst to facilitate folding of the mature protease. Of central interest has been mapping the interface between the pro region and the protease and identifying interactions critical for stabilizing the rate-limiting folding transition state. Progressive C-terminal deletions of the pro region were found to have drastic effects on the rate at which the pro region folds the protease but surprisingly little effect on inhibition of protease activity. The observed kinetic data strongly support a model in which the detailed interactions between the pro region C-terminus and the protease are remarkably similar to those of known substrate/inhibitor complexes. Further, mutation of two protease residues near the active site have significant effects on stabilization of the folding transition state (kcat) or in binding to the folding intermediate (KM). Our results suggest a model for the alpha-lytic protease pro region-mediated folding reaction that may be generally applicable to other pro region-dependent folding reactions.
α-裂解蛋白酶由一个大的(166个氨基酸)N端前体区域编码,该区域在体内和体外都短暂地需要,以确保蛋白酶结构域的正确折叠[Silen, J. L., 和Agard, D. A. (1989) 《自然》341, 462 - 464;Baker, D., 等人(1992) 《自然》356, 263 - 265]。前体区域还作为成熟酶的强效抑制剂[Baker, D., 等人(1992) 《蛋白质:结构、功能、遗传学》12, 339 - 344]。这种抑制作用是通过前体区域C端残基对活性位点的直接空间阻塞介导的[Sohl, J. L., 等人(1997) 《生物化学》36, 3894 - 3904]。通过诱变和结构-功能分析,我们开始研究前体区域作为单周转催化剂促进成熟蛋白酶折叠的机制。核心关注点一直是绘制前体区域与蛋白酶之间的界面,并确定对稳定限速折叠过渡态至关重要的相互作用。发现前体区域的渐进性C端缺失对前体区域折叠蛋白酶的速率有剧烈影响,但令人惊讶的是对蛋白酶活性的抑制影响很小。观察到的动力学数据有力地支持了一个模型,其中前体区域C端与蛋白酶之间的详细相互作用与已知底物/抑制剂复合物的相互作用非常相似。此外,活性位点附近的两个蛋白酶残基的突变对折叠过渡态(kcat)的稳定或与折叠中间体的结合(KM)有显著影响。我们的结果提出了一个α-裂解蛋白酶前体区域介导的折叠反应模型,该模型可能普遍适用于其他前体区域依赖性折叠反应。