Suppr超能文献

数字化胸部侧位X线片中的自动肺分割

Automated lung segmentation in digital lateral chest radiographs.

作者信息

Armato S G, Giger M L, Ashizawa K, MacMahon H

机构信息

Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, University of Chicago, Illinois 60637, USA.

出版信息

Med Phys. 1998 Aug;25(8):1507-20. doi: 10.1118/1.598331.

Abstract

We are developing a fully automated computerized scheme for segmenting the lung fields in digital lateral chest radiographs. Existing computer-aided diagnostic (CAD) schemes and automated lung segmentation methods have focused exclusively on the posteroanterior view, despite the diagnostic importance of the lateral view. Information from the lateral radiograph is routinely incorporated by radiologists in their decision-making process, and thus computer analysis of lateral images may potentially add another dimension to current CAD schemes. Automated analysis of the lung fields in lateral images will necessarily require accurate segmentation. Our scheme employs an initial procedure to eliminate external and subcutaneous pixels. Global gray-level histogram analysis then allows for the identification of a range of gray-level thresholds. An iterative gray-level thresholding scheme is implemented using this range of thresholds to construct a series of binary images in which contiguous regions are identified and geometrically analyzed. Regions determined to be outside the lungs are prevented from contributing to binary images at later iterations. Adaptive local gray-level thresholding is applied along the initial contour that results from the global thresholding procedure to extend the contour closer to the true lung borders. This local thresholding method uses regions of interest of various dimensions, depending on the enclosed anatomy. Smoothing and polynomial curve fitting complete the segmentation. A database of 100 normal and 100 abnormal lateral images was analyzed. Quantitative comparison of computer-segmented lung regions with lung regions manually delineated by two radiologists indicated that 83% and 84% of normal and abnormal images, respectively, displayed segmentation contours within three standard deviations of the mean inter-radiologist contour degree-of-overlap value.

摘要

我们正在开发一种全自动计算机化方案,用于在数字化胸部侧位X线片中分割肺野。尽管侧位视图具有诊断重要性,但现有的计算机辅助诊断(CAD)方案和自动肺部分割方法仅专注于正位视图。放射科医生在其决策过程中通常会纳入来自侧位X线片的信息,因此对侧位图像进行计算机分析可能会为当前的CAD方案增添新的维度。对侧位图像中的肺野进行自动分析必然需要准确的分割。我们的方案采用了一个初始程序来消除外部和皮下像素。然后通过全局灰度直方图分析来识别一系列灰度阈值。使用此阈值范围实施迭代灰度阈值方案,以构建一系列二值图像,在这些图像中识别连续区域并进行几何分析。在后续迭代中,被确定为位于肺外的区域将不会对二值图像产生影响。沿着全局阈值化过程产生的初始轮廓应用自适应局部灰度阈值化,以将轮廓扩展得更接近真实的肺边界。这种局部阈值化方法根据所包围的解剖结构使用不同尺寸的感兴趣区域。平滑和多项式曲线拟合完成分割。对包含100张正常和100张异常侧位图像的数据库进行了分析。将计算机分割的肺区域与两位放射科医生手动勾勒的肺区域进行定量比较,结果表明,分别有83%的正常图像和84%的异常图像显示的分割轮廓在放射科医生之间平均轮廓重叠度值的三个标准差范围内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验