Suppr超能文献

The role of MAO-A and MAO-B in the metabolic degradation of noradrenaline in human arteries.

作者信息

Figueiredo I V, Caramona M, Paiva M Q, Guimarães S

机构信息

Laboratory of Pharmacodynamics, Faculty of Pharmacy, University of Coimbra, Portugal.

出版信息

J Auton Pharmacol. 1998 Apr;18(2):123-8. doi: 10.1046/j.1365-2680.1998.1820123.x.

Abstract
  1. Segments of human cystic, gastric and ileocolic arteries were obtained from patients undergoing surgery. 2. Segments of arterial tissues, the noradrenaline content of which ranged between 0.27 and 0.52 microg g(-1), were incubated with 0.1 micromol l(-1) [3H]-noradrenaline for 30 min and the accumulation of the amine as well as the formation of metabolites was measured. 3. In all the arteries, oxidative deamination predominated over O-methylation; the mean values of the deaminated and O-methylated metabolites formed for the three arteries were 247.6 and 82.4 pmol g(-1) tissue, respectively. Dihydroxymandelic acid (DOMA) was the most abundant metabolite. 4. Both clorgyline (a selective MAO-A inhibitor) and selegiline (a selective MAO-B inhibitor) reduced the formation of dihydroxyphenylglycol (DOPEG), DOMA and O-methylated-deaminated metabolites (OMDA), and increased that of normetanephrine (NMN). However, clorgyline depressed the formation of DOPEG more than that of DOMA, while selegiline depressed the formation of DOMA more than that of DOPEG. 5. In conclusion, three major differences distinguish the metabolism of noradrenaline by human arteries from that observed in other species: (1) the large predominance of deamination over O-methylation; (2) the extremely high formation of DOMA; and (3) the relative lack of selectivity of clorgyline and selegiline for MAO-A and B, respectively. Since the arterial vessels used were collected from patients older than 60 years, the morphological changes depending on age may explain the increase in DOMA formation.
摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验