Suppr超能文献

负重训练的短跑运动员与负重训练者之间的身体表现差异。

Physical performance differences between weight-trained sprinters and weight trainers.

作者信息

Blazevich A J, Jenkins D

机构信息

The Department of Human Movement Studies, The University of Queensland, Australia.

出版信息

J Sci Med Sport. 1998 Jan;1(1):12-21. doi: 10.1016/s1440-2440(98)80004-2.

Abstract

The present study tested and compared well-trained athletes who were performing low-velocity, high-force resistance training and sprint running training (ST) when recruited, with subjects who were performing low-velocity, high-force resistance training but not sprint training (NST) when recruited. Eleven male sprint runners (mean +/- SD; age = 19.0 +/- 1.4 yr: height = 182.0 +/- 4.7 cm: mass = 75.7 +/- 4.7 kg), and eight male weight-trained athletes who were not currently performing sprint training, or any other additional training, (mean + SD; age = 21.5 +/- 1.8 yr: height = 184.5 +/- 3.6 cm: mass = 78.4 +/- 4.6 kg) participated in the study; all subjects had a minimum of two years resistance training experience. Tests included 1. running speed (20 m time after a 50 m acceleration distance and 20 m acceleration time from a stationary start), 2. isokinetic hip flexor/extensor torque (and torque adjusted for body mass), angle of peak torque, time to reach peak torque and torque acceleration energy at low (1.05 rad x s(-1) [60 degrees x s(-1)), moderate (4.74 rad x s(-1) [270 degrees x s(-1)) and high (8.42 rad x s(-1) [480 degrees x s(-1)) speeds and 3. maximum squat lift. ST subjects produced more isokinetic hip extensor torque when adjusted for body mass at 4.74 rad x s(-1) (270 degrees x s(-1); p<0.05) and reached their peak torque faster (p<0.05). ST subjects also produced more hip flexor torque at 8.42 rad x s(-1) (480 degrees x s(-1); p<0.05), and torque per body mass at 4.74 rad x s(-1) (270 degrees x s(-1)) and 8.42 rad x s(-1) (480 degrees x s(-1); p<0.05) and reached peak flexor torque faster than NST subjects (4.74 rad x s(-1) [270 degrees x s(-1)], p<0.05; 8.42 rad x s(-1) [480 degrees x s(-1), p<0.01). Further, ST subjects performed better in tests of running acceleration over 20 m (p<0.02) and achieved a higher maximum running velocity after a 50 m acceleration distance (p<0.001). No significant differences were found in isokinetic strength at low (1.05 rad x s(-1) [60 degrees x s(-1)) velocities or in maximal squat lift strength. The results of the present study suggest that athletes who perform low-velocity, high force training concurrently with high-velocity training are superior in tests of isokinetic strength at high velocities when compared to athletes who only perform low-velocity, high force training. This may be due to training or genetic factors.

摘要

本研究对招募时正在进行低速、高强度抗阻训练和短跑训练(ST)的训练有素的运动员,与招募时正在进行低速、高强度抗阻训练但未进行短跑训练(NST)的受试者进行了测试和比较。11名男性短跑运动员(平均值±标准差;年龄 = 19.0±1.4岁;身高 = 182.0±4.7厘米;体重 = 75.7±4.7千克),以及8名未进行短跑训练或任何其他额外训练的男性力量训练运动员(平均值±标准差;年龄 = 21.5±1.8岁;身高 = 184.5±3.6厘米;体重 = 78.4±4.6千克)参与了该研究;所有受试者至少有两年的抗阻训练经验。测试包括:1. 跑步速度(50米加速距离后的20米用时以及从静止起跑开始的20米加速时间),2. 等速髋屈肌/伸肌扭矩(以及根据体重调整后的扭矩)、峰值扭矩角度、达到峰值扭矩的时间以及在低(1.05弧度×秒⁻¹[60度×秒⁻¹])、中(4.74弧度×秒⁻¹[270度×秒⁻¹])和高(8.42弧度×秒⁻¹[480度×秒⁻¹])速度下的扭矩加速能量,以及3. 最大深蹲举。在根据体重调整后,ST组受试者在4.74弧度×秒⁻¹(270度×秒⁻¹)时产生的等速髋伸肌扭矩更多(p<0.05),且达到峰值扭矩的速度更快(p<0.05)。ST组受试者在8.42弧度×秒⁻¹(480度×秒⁻¹)时也产生了更多的髋屈肌扭矩(p<0.05),在4.74弧度×秒⁻¹(270度×秒⁻¹)和8.42弧度×秒⁻¹(480度×秒⁻¹)时每体重的扭矩更多(p<0.05),并且达到峰值屈肌扭矩的速度比NST组受试者更快(4.74弧度×秒⁻¹[270度×秒⁻¹],p<0.05;8.42弧度×秒⁻¹[480度×秒⁻¹],p<0.01)。此外,ST组受试者在20米跑步加速测试中的表现更好(p<0.02),并且在50米加速距离后的最大跑步速度更高(p<0.001)。在低(1.05弧度×秒⁻¹[60度×秒⁻¹])速度下的等速力量或最大深蹲举力量方面未发现显著差异。本研究结果表明,与仅进行低速、高强度训练的运动员相比,同时进行低速、高强度训练和高速训练的运动员在高速等速力量测试中表现更优。这可能是由于训练或遗传因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验