Suppr超能文献

使用自组织神经网络进行癫痫发作检测:验证及与其他检测策略的比较。

Seizure detection using a self-organizing neural network: validation and comparison with other detection strategies.

作者信息

Gabor A J

机构信息

Department of Neurology, University of California, Davis, 95616, USA.

出版信息

Electroencephalogr Clin Neurophysiol. 1998 Jul;107(1):27-32. doi: 10.1016/s0013-4694(98)00043-1.

Abstract

OBJECTIVE

A previously described seizure detection algorithm (CNET) (Gabor, A.J., Leach, R.R. and Dowla, F.U. Automated seizure detection using a self-organizing neural network. Electroenceph. clin. Neurophysiol., 1996, 99: 257-266) was validated with 200 records from 65 patients (4553.8 h of recording) containing 181 seizures.

DESIGN AND METHODS

Performance of the algorithm was manifest by its sensitivity ((seizures detected/total seizures) x 100) and selectivity (false-positive errors/Hr-FPH). Comparisons with the Monitor detection algorithm (Version 8.0c, Stellate Systems) and audio-transformation (Oxford Medilog) were performed.

RESULTS

CNET detected 92.8% of the seizures and had a mean FPH of 1.35 +/- 1.35. Monitor detected 74.4% of the seizures and had a mean FPH of 3.02 +/- 2.78. Audio-transformation detected all but 3 (98.3%) of the seizures. Selectivity for this detection strategy was not defined.

CONCLUSIONS

This study not only validates the CNET algorithm, but also the notion that seizures have frequency-amplitude features that are localized in signal space and can be selectively identified as being distinct from other types of EEG patterns. The ear is a specialized frequency-amplitude detector and when the signal is transformed into audio frequency range (audio-transformation), seizures can be detected with better sensitivity as compared to the other strategies examined.

摘要

目的

使用一种先前描述的癫痫发作检测算法(CNET)(加博尔,A.J.,利奇,R.R.和多拉,F.U. 使用自组织神经网络自动检测癫痫发作。《脑电图与临床神经生理学》,1996年,99卷:257 - 266页),对来自65名患者的200份记录(4553.8小时记录)进行验证,这些记录包含181次癫痫发作。

设计与方法

该算法的性能通过其灵敏度((检测到的癫痫发作数/癫痫发作总数)×100)和选择性(每小时假阳性错误数 - FPH)体现。与监测检测算法(版本8.0c,星状系统)和音频转换(牛津医学记录仪)进行了比较。

结果

CNET检测到了92.8%的癫痫发作,平均每小时假阳性错误数为1.35±1.35。监测检测算法检测到了74.4%的癫痫发作,平均每小时假阳性错误数为3.02±2.78。音频转换检测到了除3次(98.3%)之外的所有癫痫发作。未定义该检测策略的选择性。

结论

本研究不仅验证了CNET算法,还验证了癫痫发作具有频率 - 振幅特征这一观点,这些特征在信号空间中是局部化的,并且可以被选择性地识别为与其他类型的脑电图模式不同。耳朵是一种专门的频率 - 振幅检测器,当信号转换到音频频率范围(音频转换)时,与所研究的其他策略相比,能够以更高的灵敏度检测到癫痫发作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验