Suppr超能文献

分离肝细胞肿胀的能量学:一项综合研究。

Energetics of swelling in isolated hepatocytes: a comprehensive study.

作者信息

Devin A, Espié P, Guérin B, Rigoulet M

机构信息

Institut de Biochimie et Génétique Cellulaires du CNRS, Université de Bordeaux 2, France.

出版信息

Mol Cell Biochem. 1998 Jul;184(1-2):107-21.

PMID:9746316
Abstract

Cell swelling is now admitted as being a new principle of metabolic control but little is known about the energetics of cell swelling. We have studied the influence of hypo- or hyperosmolarity on both isolated hepatocytes and isolated rat liver mitochondria. Cytosolic hypoosmolarity on isolated hepatocytes induces an increase in matricial volume and does not affect the myxothiazol sensitive respiratory rate while the absolute value of the overall thermodynamic driving force over the electron transport chain increases. This points to an increase in kinetic control upstream the respiratory chain when cytosolic osmolarity is decreased. On isolated rat liver mitochondria incubated in hypoosmotic potassium chloride media, energetic parameters vary as in cells and oxidative phosphorylation efficiency is not affected. Cytosolic hyperosmolarity induced by sodium co-transported amino acids, per se, does not affect either matrix volume or energetic parameters. This is not the case in isolated rat liver mitochondria incubated in sucrose hyperosmotic medium. Indeed, in this medium, adenine nucleotide carrier is inhibited as the external osmolarity increases, which lowers the state 3 respiration close to state 4 level and consequently leads to a decrease in oxidative phosphorylation efficiency. When isolated rat liver mitochondria are incubated in KCl hyperosmotic medium, state 3 respiratory rate, matrix volume and membrane electrical potential vary as a function of time. Indeed, matrix volume is recovered in hyperosmotic KCl medium and this recovery is dependent on Pi-Kentry. State 3 respiratory rate increases and membrane electrical potential difference decreases during the first minutes of mitochondrial incubation until the attainment of the same value as in isoosmotic medium. This shows that matrix volume, flux and force are regulated as a function of time in KCl hyperosmotic medium. Under steady state, neither matrix volume nor energetic parameters are affected. Moreover, NaCl hyperosmotic medium allows matrix volume recovery but induces a decrease in state 3 respiratory flux. This indicates that potassium is necessary for both matrix volume and flux recovery in isolated mitochondria. We conclude that hypoosmotic medium induces an increase in kinetic control both upstream and on the respiratory chain and changes the oxidative phosphorylation response to forces. At steady state, hyperosmolarity, per se, has no effect on oxidative phosphorylation in either isolated hepatocytes or isolated mitochondria incubated in KCl medium. Therefore, potassium plays a key role in matrix volume, flux and force regulation.

摘要

细胞肿胀如今被公认为是代谢控制的一项新原则,但关于细胞肿胀的能量学却知之甚少。我们研究了低渗或高渗对分离的肝细胞和分离的大鼠肝线粒体的影响。分离的肝细胞胞质低渗会导致基质体积增加,且不影响抗霉素 A 敏感的呼吸速率,而电子传递链上整体热力学驱动力的绝对值会增加。这表明当胞质渗透压降低时,呼吸链上游的动力学控制增强。在低渗氯化钾培养基中孵育的分离大鼠肝线粒体,其能量参数变化与细胞中的情况相同,氧化磷酸化效率不受影响。由共转运氨基酸的钠所诱导的胞质高渗本身既不影响基质体积也不影响能量参数。在蔗糖高渗培养基中孵育的分离大鼠肝线粒体则并非如此。实际上,在这种培养基中,随着外部渗透压升高,腺嘌呤核苷酸转运体受到抑制,这使得状态 3 呼吸速率降低至接近状态 4 水平,从而导致氧化磷酸化效率下降。当分离的大鼠肝线粒体在氯化钾高渗培养基中孵育时,状态 3 呼吸速率、基质体积和膜电位会随时间变化。实际上,基质体积在高渗氯化钾培养基中会恢复,且这种恢复依赖于磷酸钾内流。在孵育的最初几分钟内,线粒体状态 3 呼吸速率增加而膜电位差减小,直至达到与等渗培养基中相同的值。这表明在氯化钾高渗培养基中,基质体积、通量和驱动力会随时间受到调节。在稳态下,基质体积和能量参数均不受影响。此外,氯化钠高渗培养基可使基质体积恢复,但会导致状态 3 呼吸通量降低。这表明钾对于分离线粒体中基质体积和通量的恢复均必不可少。我们得出结论,低渗培养基会导致呼吸链上游及呼吸链上的动力学控制增强,并改变氧化磷酸化对驱动力的反应。在稳态下,高渗本身对在氯化钾培养基中孵育的分离肝细胞或分离线粒体的氧化磷酸化没有影响。因此,钾在基质体积、通量和驱动力调节中起关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验