Devin A, Guérin B, Rigoulet M
Institut de Biochimie et Génétique Cellulaires du CNRS, Université de Bordeaux 2, France.
Biochim Biophys Acta. 1996 Jan 11;1273(1):13-20. doi: 10.1016/0005-2728(95)00130-1.
The aim of this work was a thermodynamic and kinetic study of the influence of varying external osmolarity on overall oxidative phosphorylations in isolated rat liver mitochondria. When external osmolarity is increased from 100 to 400 mosM by using a non-penetrant sugar: (i) matrix volume diminishes, (ii) state 3 respiratory rate decreases when state 4 slightly varies, (iii) states 3 and 4 protonmotive force and NAD(P)H level increase, whereas oxidative phosphorylation efficiency (ATP/O) decreases. Indeed, respiratory flux versus protonmotive force relationships depend on the osmolarity considered: the lower the external osmolarity, the higher the span of overall driving force necessary for the same respiratory rate. To further investigate the mechanism of the decrease in respiratory and ATP synthesis flux leading to a lowering in oxidative phosphorylation efficiency, we determined the adenine nucleotide carrier control coefficient on respiratory and ATP synthesis rates respectively. The main result is that the adenine nucleotide carrier control coefficient on respiratory rate decreases, and conversely that adenine nucleotide carrier control on ATP synthesis rate increases, from iso- to hyperosmolarity. Furthermore, whatever the osmolarity, when state 3 respiratory rate is titrated with carboxyatractyloside, the same relationship is observed between ATP/O ratio and respiratory flux. From many previous studies, it has been shown that an increase in external osmolarity and a consequent decrease in matrix volume inhibits almost all mitochondrial proton pumps (coupling site 1 and 2 of respiratory chain, ATPase) in different ways. In this work, we show that in phosphorylating mitochondria, the adenine nucleotide carrier plays a key role: its inhibition as the external osmolarity increases lowers the state 3 respiration close to state 4 level and consequently leads to a decrease in oxidative phosphorylation efficiency.
这项工作的目的是对不同外部渗透压对分离的大鼠肝脏线粒体中整体氧化磷酸化的影响进行热力学和动力学研究。当通过使用非渗透性糖将外部渗透压从100 mosM增加到400 mosM时:(i)基质体积减小,(ii)状态4略有变化时状态3呼吸速率降低,(iii)状态3和4的质子动力和NAD(P)H水平增加,而氧化磷酸化效率(ATP/O)降低。实际上,呼吸通量与质子动力的关系取决于所考虑的渗透压:外部渗透压越低,相同呼吸速率所需的总驱动力跨度越高。为了进一步研究导致氧化磷酸化效率降低的呼吸和ATP合成通量下降的机制,我们分别测定了腺嘌呤核苷酸载体对呼吸和ATP合成速率的控制系数。主要结果是,从等渗到高渗,腺嘌呤核苷酸载体对呼吸速率的控制系数降低,相反,腺嘌呤核苷酸载体对ATP合成速率的控制增加。此外,无论渗透压如何,当用羧基苍术苷滴定状态3呼吸速率时,ATP/O比值与呼吸通量之间观察到相同的关系。从许多先前的研究中可以看出,外部渗透压的增加以及随之而来的基质体积的减小以不同方式抑制了几乎所有的线粒体质子泵(呼吸链的偶联位点1和2,ATP酶)。在这项工作中,我们表明在进行磷酸化的线粒体中,腺嘌呤核苷酸载体起着关键作用:随着外部渗透压的增加对其抑制会使状态3呼吸降低到接近状态4的水平,从而导致氧化磷酸化效率降低。