Suppr超能文献

阴道加德纳菌对铁的摄取

Acquisition of iron by Gardnerella vaginalis.

作者信息

Jarosik G P, Land C B, Duhon P, Chandler R, Mercer T

机构信息

Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.

出版信息

Infect Immun. 1998 Oct;66(10):5041-7. doi: 10.1128/IAI.66.10.5041-5047.1998.

Abstract

Six Gardnerella vaginalis strains were examined for the ability to utilize various iron-containing compounds as iron sources. In a plate bioassay, all six strains acquired iron from ferrous chloride, ferric chloride, ferrous sulfate, ferric ammonium citrate, ferrous ammonium sulfate, bovine and equine hemin, bovine catalase, and equine, bovine, rabbit, and human hemoglobin. All six strains also acquired iron from human lactoferrin, but not from human transferrin, as determined by a liquid broth growth assay. Siderophore production was detected in eight G. vaginalis strains by the chrome azurol S universal chemical assay. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cytoplasmic membrane proteins isolated from G. vaginalis 594 grown under iron-replete and iron-restricted conditions revealed several iron-regulated proteins ranging in molecular mass from 33 to 94 kDa. These results indicate that G. vaginalis may acquire iron from iron salts and host iron compounds.

摘要

对6株阴道加德纳菌菌株利用各种含铁化合物作为铁源的能力进行了检测。在平板生物测定中,所有6株菌株都能从氯化亚铁、氯化铁、硫酸亚铁、柠檬酸铁铵、硫酸亚铁铵、牛和马的血红素、牛过氧化氢酶以及马、牛、兔和人的血红蛋白中获取铁。通过液体肉汤生长测定确定,所有6株菌株也能从人乳铁蛋白中获取铁,但不能从人转铁蛋白中获取铁。通过铬天青S通用化学测定法在8株阴道加德纳菌菌株中检测到了铁载体的产生。对在铁充足和铁限制条件下生长的阴道加德纳菌594分离的细胞质膜蛋白进行十二烷基硫酸钠-聚丙烯酰胺凝胶电泳,结果显示了几种铁调节蛋白,其分子量范围为33至94 kDa。这些结果表明,阴道加德纳菌可能从铁盐和宿主铁化合物中获取铁。

相似文献

1
Acquisition of iron by Gardnerella vaginalis.
Infect Immun. 1998 Oct;66(10):5041-7. doi: 10.1128/IAI.66.10.5041-5047.1998.
2
Binding of heme by Gardnerella vaginalis.
J Basic Microbiol. 2001;41(1):37-43. doi: 10.1002/1521-4028(200103)41:1<37::AID-JOBM37>3.0.CO;2-W.
3
Identification of a human lactoferrin-binding protein in Gardnerella vaginalis.
Infect Immun. 2000 Jun;68(6):3443-7. doi: 10.1128/IAI.68.6.3443-3447.2000.
4
Binding of catalase by Gardnerella vaginalis.
FEMS Microbiol Lett. 2000 Sep 15;190(2):191-4. doi: 10.1111/j.1574-6968.2000.tb09285.x.
5
Identification of a Gardnerella vaginalis hemoglobin-binding protein.
Curr Microbiol. 2001 Jan;42(1):49-52. doi: 10.1007/s002840010177.
6
Iron sources for Haemophilus ducreyi.
J Med Microbiol. 1991 Jun;34(6):317-22. doi: 10.1099/00222615-34-6-317.
7
Transferrin and Lactoferrin - Human Iron Sources for Enterococci.
Pol J Microbiol. 2017 Dec 4;66(4):419-425. doi: 10.5604/01.3001.0010.6495.
8
Staphylococcal iron requirements, siderophore production, and iron-regulated protein expression.
Infect Immun. 1994 Jun;62(6):2309-14. doi: 10.1128/iai.62.6.2309-2314.1994.
10
Iron acquisition by Ornithobacterium rhinotracheale.
Avian Dis. 2008 Sep;52(3):419-25. doi: 10.1637/8185-113007-Reg.

引用本文的文献

1
Vaginal pharmacomicrobiomics modulates risk of persistent and recurrent bacterial vaginosis.
NPJ Biofilms Microbiomes. 2025 Jul 1;11(1):115. doi: 10.1038/s41522-025-00748-0.
2
Syntrophic bacterial and host-microbe interactions in bacterial vaginosis.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf055.
3
Prevalence and clinical correlates of spp., , and in pregnant women in Bukavu, Democratic Republic of the Congo.
Front Cell Infect Microbiol. 2025 Jan 17;14:1514884. doi: 10.3389/fcimb.2024.1514884. eCollection 2024.
4
Cargo exchange between human and bacterial extracellular vesicles in gestational tissues: a new paradigm in communication and immune development.
Extracell Vesicles Circ Nucl Acids. 2024 Jun 18;5(2):297-328. doi: 10.20517/evcna.2024.21. eCollection 2024.
5
Revisited: Species Heterogeneity, Virulence Factors, Mucosal Immune Responses, and Contributions to Bacterial Vaginosis.
Infect Immun. 2023 May 16;91(5):e0039022. doi: 10.1128/iai.00390-22. Epub 2023 Apr 18.
7
Antimicrobial activity of bovine lactoferrin against species clinical isolates.
Front Microbiol. 2022 Sep 8;13:1000822. doi: 10.3389/fmicb.2022.1000822. eCollection 2022.
8
Antibiotic resistance and pathogenicity assessment of various sp. strains in local China.
Front Microbiol. 2022 Sep 26;13:1009798. doi: 10.3389/fmicb.2022.1009798. eCollection 2022.
9
The Medium Is the Message: Defining a "Normal" Vaginal Microbiome in Healthy Reproductive-Age Women.
Reprod Sci. 2023 Feb;30(2):722-727. doi: 10.1007/s43032-022-01067-x. Epub 2022 Aug 18.
10
Healthy Vaginal Microbiota and Influence of Probiotics Across the Female Life Span.
Front Microbiol. 2022 Apr 8;13:819958. doi: 10.3389/fmicb.2022.819958. eCollection 2022.

本文引用的文献

3
Bacterial vaginosis as a risk factor for upper genital tract infection.
Am J Obstet Gynecol. 1997 Nov;177(5):1184-7. doi: 10.1016/s0002-9378(97)70038-3.
5
HIV-1 infection associated with abnormal vaginal flora morphology and bacterial vaginosis.
Lancet. 1997 Aug 23;350(9077):546-50. doi: 10.1016/s0140-6736(97)01063-5.
7
Bacterial vaginosis and intraamniotic infection.
Am J Obstet Gynecol. 1997 Mar;176(3):672-7. doi: 10.1016/s0002-9378(97)70568-4.
10
Quelling the red menace: haem capture by bacteria.
Mol Microbiol. 1995 Nov;18(3):383-90. doi: 10.1111/j.1365-2958.1995.mmi_18030383.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验