Evenäs J, Malmendal A, Thulin E, Carlström G, Forsén S
Physical Chemistry 2, Lund University, Sweden.
Biochemistry. 1998 Sep 29;37(39):13744-54. doi: 10.1021/bi9806448.
Calcium activation of the C-terminal domain of calmodulin was studied using 1H and 15N NMR spectroscopy. The important role played by the conserved bidentate glutamate Ca2+ ligand in the binding loops is emphasized by the striking effects resulting from a mutation of this glutamic acid to a glutamine, i.e. E104Q in loop III and E140Q in loop IV. The study involves determination of Ca2+ binding constants, assignments, and structural characterizations of the apo, (Ca2+)1, and (Ca2+)2 states of the E104Q mutant and comparisons to the wild-type protein and the E140Q mutant [Evenäs et al. (1997) Biochemistry 36, 3448-3457]. NMR titration data show sequential Ca2+ binding in the E104Q mutant. The first Ca2+ binds to loop IV and the second to loop III, which is the order reverse to that observed for the E140Q mutant. In both mutants, the major structural changes occur upon Ca2+ binding to loop IV, which implies a different response to Ca2+ binding in the N- and C-terminal EF-hands. Spectral characteristics show that the (Ca2+)1 and (Ca2+)2 states of the E104Q mutant undergo global exchange on a 10-100 micros time scale between conformations seemingly similar to the closed and open structures of this domain in wild-type calmodulin, paralleling earlier observations for the (Ca2+)2 state of the E140Q mutant, indicating that both glutamic acid residues, E104 and E140, are required for stabilization of the open conformation in the (Ca2+)2 state. To verify that the NOE constraints cannot be fulfilled in a single structure, solution structures of the (Ca2+)2 state of the E104Q mutant are calculated. Within the ensemble of structures the precision is good. However, the clearly dynamic nature of the state, a large number of violated distance restraints, ill-defined secondary structural elements, and comparisons to the structures of calmodulin indicate that the ensemble does not provide a good picture of the (Ca2+)2 state of the E104Q mutant but rather represents the distance-averaged structure of at least two distinct different conformations.
利用氢-1和氮-15核磁共振光谱研究了钙调蛋白C末端结构域的钙激活过程。谷氨酸突变为谷氨酰胺(即环III中的E104Q和环IV中的E140Q)所产生的显著效应,突出了保守的双齿谷氨酸钙配体在结合环中所起的重要作用。该研究涉及测定E104Q突变体的脱辅基、(Ca2+)1和(Ca2+)2状态的钙结合常数、进行归属以及结构表征,并与野生型蛋白和E140Q突变体进行比较[埃文纳斯等人(1997年),《生物化学》36卷,3448 - 3457页]。核磁共振滴定数据表明E104Q突变体中钙的结合是顺序性的。第一个钙离子结合到环IV,第二个结合到环III,这与E140Q突变体中观察到的顺序相反。在这两个突变体中,主要的结构变化都发生在钙离子结合到环IV时,这意味着N末端和C末端EF手型结构对钙结合的反应不同。光谱特征表明,E104Q突变体的(Ca+)1和(Ca+)2状态在10 - 100微秒的时间尺度上,在似乎类似于野生型钙调蛋白该结构域的闭合和开放结构之间进行全局构象交换,这与之前对E140Q突变体(Ca2+)2状态的观察结果相似,表明谷氨酸残基E104和E140都是稳定(Ca2+)2状态下开放构象所必需的。为了验证在单一结构中无法满足核欧沃豪斯效应(NOE)限制条件,计算了E104Q突变体(Ca2+)2状态的溶液结构。在结构集合中精度良好。然而,该状态明显的动态性质、大量违反的距离限制、不明确的二级结构元件以及与钙调蛋白结构的比较表明,该结构集合并没有很好地呈现E104Q突变体(Ca2+)2状态,而是代表了至少两种不同构象的距离平均结构。