Suppr超能文献

位置学习的分子、细胞和神经解剖学基础。

Molecular, cellular, and neuroanatomical substrates of place learning.

作者信息

Silva A J, Giese K P, Fedorov N B, Frankland P W, Kogan J H

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.

出版信息

Neurobiol Learn Mem. 1998 Jul-Sep;70(1-2):44-61. doi: 10.1006/nlme.1998.3837.

Abstract

Learning and remembering the location of food resources, predators, escape routes, and immediate kin is perhaps the most essential form of higher cognitive processing in mammals. Two of the most frequently studied forms of place learning are spatial learning and contextual conditioning. Spatial learning refers to an animal's capacity to learn the location of a reward, such as the escape platform in a water maze, while contextual conditioning taps into an animal's ability to associate specific places with aversive stimuli, such as an electric shock. Recently, transgenic and gene targeting techniques have been introduced to the study of place learning. In contrast with the abundant literature on the neuroanatomical substrates of place learning in rats, very little has been done in mice. Thus, in the first part of this article, we will review our studies on the involvement of the hippocampus in both spatial learning and contextual conditioning. Having demonstrated the importance of the hippocampus to place learning, we will then focus attention on the molecular and cellular substrates of place learning. We will show that just as in rats, mouse hippocampal pyramidal cells can show place specific firing. Then, we will review our evidence that hippocampal-dependent place learning involves a number of interacting physiological mechanisms with distinct functions. We will show that in addition to long-term potentiation, the hippocampus uses a number of other mechanisms, such as short-term-plasticity and changes in spiking, to process, store, and recall information. Much of the focus of this article is on genetic studies of learning and memory (L&M). However, there is no single experiment that can unambiguously connect any cellular or molecular mechanism with L&M. Instead, several different types of studies are required to determine whether any one mechanism is involved in L&M, including (i) the development of biologically based learning models that explain the involvement of a given mechanism in L&M, (ii) lesion experiments (genetics and pharmacology), (iii) direct observations during learning, and (iv) experiments where learning is triggered by turning on the candidate mechanism. We will show how genetic techniques will be key to unraveling the molecular and cellular basis of place learning.

摘要

学习并记住食物资源、捕食者、逃生路线以及直系亲属的位置,可能是哺乳动物中高等认知加工最基本的形式。位置学习最常被研究的两种形式是空间学习和情境条件作用。空间学习指动物学习奖励位置的能力,比如水迷宫中的逃生平台,而情境条件作用利用动物将特定地点与厌恶刺激(如电击)联系起来的能力。最近,转基因和基因靶向技术已被引入位置学习的研究中。与关于大鼠位置学习神经解剖学基础的丰富文献相比,在小鼠方面所做的研究很少。因此,在本文的第一部分,我们将回顾我们关于海马体在空间学习和情境条件作用中所起作用的研究。在证明了海马体对位置学习的重要性之后,我们将把注意力集中在位置学习的分子和细胞基础上。我们将表明,与大鼠一样,小鼠海马体锥体细胞也能表现出位置特异性放电。然后,我们将回顾我们的证据,即依赖海马体的位置学习涉及许多具有不同功能的相互作用的生理机制。我们将表明,除了长时程增强外,海马体还利用许多其他机制,如短时可塑性和放电变化,来处理、存储和回忆信息。本文的大部分重点是学习与记忆(L&M)的遗传学研究。然而,没有任何一个单一实验能够明确地将任何细胞或分子机制与学习与记忆联系起来。相反,需要几种不同类型的研究来确定任何一种机制是否参与学习与记忆,包括(i)开发基于生物学的学习模型,以解释给定机制在学习与记忆中的作用,(ii)损伤实验(遗传学和药理学),(iii)学习过程中的直接观察,以及(iv)通过开启候选机制来触发学习的实验。我们将展示基因技术如何成为揭示位置学习分子和细胞基础的关键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验