Suppr超能文献

甲状旁腺激素仿生合成中的甲硫氨酸连接策略

Methionine ligation strategy in the biomimetic synthesis of parathyroid hormones.

作者信息

Tam J P, Yu Q

机构信息

Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232-2363, USA.

出版信息

Biopolymers. 1998 Oct 15;46(5):319-27. doi: 10.1002/(SICI)1097-0282(19981015)46:5<319::AID-BIP3>3.0.CO;2-S.

Abstract

In biological systems, both proteolysis and aminolysis of amide bonds produce activated intermediates through acyl transfer reactions either inter- or intramolecularly. Protein splicing is an illustrative example that proceeds through a series of catalyzed acyl transfer reactions and culminates at an O- or S-acyl intermediate. This intermediate leads to an uncatalyzed acyl migration to form an amide bond in the spliced product. A ligation method mimicking the uncatalyzed final steps in protein splicing has been developed utilizing the acyl transfer amide-bond feature for the blockwise coupling of unprotected, free peptide segments at methionine (Met). The latent thiol moiety of Met can be exploited using homocysteine at the alpha-amino terminal position of a free peptide for transthioesterification with another free peptide containing an alpha-thioester to give an S-acyl intermediate. A subsequent, proximity-driven S- to N-acyl migration of this acyl intermediate spontaneously rearranges to form a homocysteinyl amide bond. S-methylation with excess p-nitrobenezensulfonate yields Met at the ligation site. The methionine ligation is selective and orthogonal, and is usually completed within 4 h when performed at slightly basis pH and under strongly reductive conditions. No side reactions due to acylation were observed with any other alpha-amines of both peptide segments as seen in the synthesis of parathyroid hormone peptides. Furthermore, cyclic peptide can also be obtained through the same strategy by placing both homocysteine at the amino terminus and the thioester at the carboxyl terminus in an unprotected peptide precursor. These biomimetic ligation strategies hold promise for engineering novel peptides and proteins.

摘要

在生物系统中,酰胺键的蛋白水解和氨解都会通过分子间或分子内的酰基转移反应产生活化中间体。蛋白质剪接就是一个典型例子,它通过一系列催化的酰基转移反应进行,并最终形成O-或S-酰基中间体。该中间体引发非催化的酰基迁移,从而在剪接产物中形成酰胺键。利用酰基转移酰胺键的特性,已经开发出一种模拟蛋白质剪接中非催化最后步骤的连接方法,用于在甲硫氨酸(Met)处对未保护的游离肽段进行逐段偶联。可以利用游离肽α-氨基端的高半胱氨酸来利用Met潜在的硫醇部分,与另一个含有α-硫酯的游离肽进行硫酯转移反应,生成S-酰基中间体。随后,该酰基中间体由邻近效应驱动的从S-到N-的酰基迁移会自发重排,形成高半胱氨酸酰胺键。用过量的对硝基苯磺酸盐进行S-甲基化反应,在连接位点生成Met。甲硫氨酸连接具有选择性和正交性,在略呈碱性的pH值和强还原条件下进行时,通常在4小时内完成。如在甲状旁腺激素肽的合成中所见,两个肽段的任何其他α-胺均未观察到因酰化导致的副反应。此外,通过将高半胱氨酸置于未保护肽前体的氨基末端,硫酯置于羧基末端,也可以通过相同策略获得环肽。这些仿生连接策略有望用于构建新型肽和蛋白质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验