Suppr超能文献

Nitrogen excretion and the cardiorespiratory physiology of the gulf toadfish, Opsanus beta.

作者信息

Gilmour K M, Perry S F, Wood C M, Henry R P, Laurent P, Pärt P, Walsh P J

机构信息

Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Florida 33149, USA.

出版信息

Physiol Zool. 1998 Sep-Oct;71(5):492-505. doi: 10.1086/515969.

Abstract

Gulf toadfish, Opsanus beta, are facultatively ureotelic and can excrete the majority of their nitrogenous waste as urea. Urea excretion occurs in "pulses." The hypothesis that pulsatile urea excretion reflects sudden, transient, generalized increases in the branchial conductance was investigated by the simultaneous monitoring of cardiorespiratory variables, oxygen uptake, and whole-body urea, ammonia, and/or 3H2O effluxes. The direct monitoring of both expired branchial water and water exiting a respirometer demonstrated that urea pulses were derived from the gills. No significant changes in ventilation or cardiac frequency, oxygen uptake, or ammonia efflux were observed during natural urea pulses, refuting the hypothesis that pulsatile urea excretion reflects pulsatile increases in the generalized diffusive properties of the gill for solute transfer. An alternative model for pulsatile urea excretion postulates that the gill urea permeability is increased periodically by the insertion and/or activation of specific urea transporters into gill cell membranes. Pulsatile urea excretion was abolished by pretreatment with the cytoskeletal-disrupting agent colchicine; colchicine may block trafficking of urea transporter-containing vesicles. Exocytosis of water following the fusion of vesicles with gill cell membranes could explain the significantly elevated 3H2O efflux observed during urea pulses.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验