Suppr超能文献

Nitrogen excretion and the cardiorespiratory physiology of the gulf toadfish, Opsanus beta.

作者信息

Gilmour K M, Perry S F, Wood C M, Henry R P, Laurent P, Pärt P, Walsh P J

机构信息

Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Florida 33149, USA.

出版信息

Physiol Zool. 1998 Sep-Oct;71(5):492-505. doi: 10.1086/515969.

Abstract

Gulf toadfish, Opsanus beta, are facultatively ureotelic and can excrete the majority of their nitrogenous waste as urea. Urea excretion occurs in "pulses." The hypothesis that pulsatile urea excretion reflects sudden, transient, generalized increases in the branchial conductance was investigated by the simultaneous monitoring of cardiorespiratory variables, oxygen uptake, and whole-body urea, ammonia, and/or 3H2O effluxes. The direct monitoring of both expired branchial water and water exiting a respirometer demonstrated that urea pulses were derived from the gills. No significant changes in ventilation or cardiac frequency, oxygen uptake, or ammonia efflux were observed during natural urea pulses, refuting the hypothesis that pulsatile urea excretion reflects pulsatile increases in the generalized diffusive properties of the gill for solute transfer. An alternative model for pulsatile urea excretion postulates that the gill urea permeability is increased periodically by the insertion and/or activation of specific urea transporters into gill cell membranes. Pulsatile urea excretion was abolished by pretreatment with the cytoskeletal-disrupting agent colchicine; colchicine may block trafficking of urea transporter-containing vesicles. Exocytosis of water following the fusion of vesicles with gill cell membranes could explain the significantly elevated 3H2O efflux observed during urea pulses.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验