Suppr超能文献

Reduction of advanced glycation end-product (AGE) levels in nervous tissue proteins of diabetic Lewis rats following islet transplants is related to different durations of poor metabolic control.

作者信息

Sensi M, Morano S, Morelli S, Castaldo P, Sagratella E, De Rossi M G, Andreani D, Caltabiano V, Vetri M, Purrello F, Di Mario U

机构信息

Clinica Medica II (Endocrinology), La Sapienza University, Rome, Italy.

出版信息

Eur J Neurosci. 1998 Sep;10(9):2768-75. doi: 10.1111/j.1460-9568.1998.00287.x.

Abstract

Advanced glycation end-products (AGEs) are irreversible compounds which, by abnormally accumulating over proteins as a consequence of diabetic hyperglycaemia, can damage tissues and thus contribute to the pathogenesis of diabetic complications. This study was performed to evaluate whether restoration of euglycaemia by islet transplantation modifies AGE accumulation in central and peripheral nervous tissue proteins and, as a comparison, in proteins from a non-nervous tissue. Two groups of streptozotocin diabetic inbred Lewis rats with 4 (T1) or 8 (T2) months disease duration were grafted into the liver via the portal vein with 1200-1500 islets freshly isolated from normal Lewis rats. Transplanted rats, age-matched control and diabetic rats studied in parallel, were followed for a further 4-month period. At study conclusion, glycaemia, glycated haemoglobin and body weight were measured in all animals, and an oral glucose tolerance test (OGTT) performed in transplanted rats. AGE levels in cerebral cortex, spinal cord, sciatic nerve proteins and tail tendon collagen were measured by enzyme-linked immunosorbent assay (ELISA). Transplanted animal OGTTs were within normal limits, as were glycaemia and glycated haemoglobin. Diabetic animal AGEs were significantly higher than those of control animals. Protein AGE values were reduced in many transplanted animals compared to diabetic animals, reaching statistical significance in spinal cord (P < 0.05), sciatic nerve (P < 0.02) and tail tendon collagen (P < 0.05) of T1 animals. Thus, return to euglycaemia following islet transplantation after 4 months of diabetes with poor metabolic control reduces AGE accumulation rate in the protein fractions of the mixed and purely peripheral nervous tissues (spinal cord and sciatic nerve, respectively). However, after a double duration of bad metabolic control, a statistically significant AGE reduction has not been achieved in any of the tissues, suggesting the importance of an early therapeutic intervention to prevent the possibly pathological accumulation of AGEs in nervous and other proteins.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验