Suppr超能文献

距离几何学利用预测蛋白质结构的共有距离为小型螺旋蛋白生成类似天然的折叠结构。

Distance geometry generates native-like folds for small helical proteins using the consensus distances of predicted protein structures.

作者信息

Huang E S, Samudrala R, Ponder J W

机构信息

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.

出版信息

Protein Sci. 1998 Sep;7(9):1998-2003. doi: 10.1002/pro.5560070916.

Abstract

For successful ab initio protein structure prediction, a method is needed to identify native-like structures from a set containing both native and non-native protein-like conformations. In this regard, the use of distance geometry has shown promise when accurate inter-residue distances are available. We describe a method by which distance geometry restraints are culled from sets of 500 protein-like conformations for four small helical proteins generated by the method of Simons et al. (1997). A consensus-based approach was applied in which every inter-Calpha distance was measured, and the most frequently occurring distances were used as input restraints for distance geometry. For each protein, a structure with lower coordinate root-mean-square (RMS) error than the mean of the original set was constructed; in three cases the topology of the fold resembled that of the native protein. When the fold sets were filtered for the best scoring conformations with respect to an all-atom knowledge-based scoring function, the remaining subset of 50 structures yielded restraints of higher accuracy. A second round of distance geometry using these restraints resulted in an average coordinate RMS error of 4.38 A.

摘要

为了成功地进行从头算蛋白质结构预测,需要一种方法从包含天然和非天然蛋白质样构象的集合中识别出类似天然的结构。在这方面,当有准确的残基间距离时,距离几何方法已显示出前景。我们描述了一种方法,通过该方法从由西蒙斯等人(1997年)的方法生成的四个小螺旋蛋白的500个蛋白质样构象集合中挑选出距离几何约束。应用了一种基于共识的方法,其中测量每个Cα间距离,并将最常出现的距离用作距离几何的输入约束。对于每个蛋白质,构建了一个坐标均方根(RMS)误差低于原始集合平均值的结构;在三种情况下,折叠的拓扑结构类似于天然蛋白质。当根据基于全原子知识的评分函数对折叠集进行最佳评分构象筛选时,剩余的50个结构子集产生了更高准确性的约束。使用这些约束进行第二轮距离几何计算,得到的平均坐标RMS误差为4.38埃。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验