Suppr超能文献

一氧化氮信号传导:你能相信一种简单的自由基可以作为第二信使、自分泌物质、旁分泌物质、神经递质和激素吗?

Nitric oxide signaling: would you believe that a simple free radical could be a second messenger, autacoid, paracrine substance, neurotransmitter, and hormone?

作者信息

Murad F

机构信息

Department of Integrative Biology, Pharmacology and Physiology, University of Texas-Houston Medical Center 77030, USA.

出版信息

Recent Prog Horm Res. 1998;53:43-59; discussion 59-60.

PMID:9769702
Abstract

Nitric oxide signaling during the past two decades has been one of the most rapidly growing areas in biology. This simple free radical gas with an unshared electron can regulate an ever-growing list of biological processes. In most instances, nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis. However, effects of nitric oxide that are independent of cyclic GMP are also growing at a rapid rate. Nitric oxide can interact with transition metals such as iron, thiol groups, other free radicals, oxygen, superoxide anion, unsaturated fatty acids, and other reactive species. The effects of nitric oxide can mediate important physiological regulatory events in cell regulation, cell-cell communication, and signaling. However, as with any messenger molecule, there can be too much or too little of the substance and pathological events ensue. Methods to regulate either nitric oxide formation, metabolism, or function have been used therapeutically for more than a century, as with nitroglycerin therapy. Current and future research should permit the development of an expanded therapeutic armamentarium for the physician to manage effectively a number of important disorders. These expectations have undoubtedly fueled the vast research interests in this simple molecule.

摘要

在过去二十年中,一氧化氮信号传导一直是生物学领域中发展最为迅速的领域之一。这种具有未成对电子的简单自由基气体能够调节越来越多的生物过程。在大多数情况下,一氧化氮通过激活鸟苷酸环化酶并增加环鸟苷酸的合成来介导其生物学效应。然而,与环鸟苷酸无关的一氧化氮效应也在迅速增加。一氧化氮可与过渡金属如铁、巯基、其他自由基、氧气、超氧阴离子、不饱和脂肪酸及其他活性物质相互作用。一氧化氮的效应可介导细胞调节、细胞间通讯及信号传导中的重要生理调节事件。然而,与任何信使分子一样,该物质可能过多或过少,进而引发病理事件。如同硝酸甘油治疗一样,调节一氧化氮生成、代谢或功能的方法已在治疗中使用了一个多世纪。当前及未来的研究应能促使开发出更多的治疗手段,以便医生有效治疗多种重要疾病。这些期望无疑激发了对这种简单分子的广泛研究兴趣。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验