Suppr超能文献

使用平移不变人工神经网络对数字乳腺钼靶片中的簇状微钙化进行计算机检测。

Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network.

作者信息

Zhang W, Doi K, Giger M L, Wu Y, Nishikawa R M, Schmidt R A

机构信息

Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, University of Chicago, Illinois 60637.

出版信息

Med Phys. 1994 Apr;21(4):517-24. doi: 10.1118/1.597177.

Abstract

A computer-aided diagnosis (CAD) scheme has been developed in our laboratory for the detection of clustered microcalcifications in digital mammograms. In this study, we apply a shift-invariant neural network to eliminate false-positive detections reported by the CAD scheme. The shift-invariant neural network is a multilayer back-propagation neural network with local, shift-invariant interconnections. The advantage of the shift-invariant neural network is that the result of the network is not dependent on the locations of the clustered microcalcifications in the input layer. The neural network is trained to detect each individual microcalcification in a given region of interest (ROI) reported by the CAD scheme. A ROI is classified as a positive ROI if the total number of microcalcifications detected in the ROI is greater than a certain number. The performance of the shift-invariant neural network was evaluated by means of a jackknife (or holdout) method and ROC analysis using a database of 168 ROIs, as reported by the CAD scheme when applied to 34 mammograms. The analysis yielded an average area under the ROC curve (Az) of 0.91. Approximately 55% of false-positive ROIs were eliminated without any loss of the true-positive ROIs. The result is considerably better than that obtained in our previous study using a conventional three-layer, feed-forward neural network. The effect of the network structure on the performance of the shift-invariant neural network is also studied.

摘要

我们实验室已开发出一种计算机辅助诊断(CAD)方案,用于检测数字乳腺钼靶片中的簇状微钙化。在本研究中,我们应用一种平移不变神经网络来消除CAD方案报告的假阳性检测结果。平移不变神经网络是一种具有局部、平移不变互连的多层反向传播神经网络。平移不变神经网络的优势在于其网络结果不依赖于输入层中簇状微钙化的位置。该神经网络经过训练,用于检测CAD方案报告的给定感兴趣区域(ROI)中的每个微钙化。如果在ROI中检测到的微钙化总数大于某个数值,则将该ROI分类为阳性ROI。如将CAD方案应用于34幅乳腺钼靶片时所报告的那样,使用包含168个ROI的数据库,通过留一法(或留出法)和ROC分析对平移不变神经网络的性能进行了评估。分析得出ROC曲线下的平均面积(Az)为0.91。在没有任何真阳性ROI损失的情况下,大约55%的假阳性ROI被消除。该结果比我们之前使用传统三层前馈神经网络所获得的结果要好得多。同时还研究了网络结构对平移不变神经网络性能的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验