Suppr超能文献

一种与分裂沟推进所需的线虫驱动蛋白。

A nematode kinesin required for cleavage furrow advancement.

作者信息

Powers J, Bossinger O, Rose D, Strome S, Saxton W

机构信息

Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.

出版信息

Curr Biol. 1998 Oct 8;8(20):1133-6. doi: 10.1016/s0960-9822(98)70470-1.

Abstract

Dividing cells need to coordinate the separation of chromosomes with the formation of a cleavage plane. There is evidence that microtubule bundles in the interzone region of the anaphase spindle somehow control both the location and the assembly of the cleavage furrow [1-3]. A microtubule motor that concentrates in the interzone, MKLP1, has previously been implicated in the assembly of both the metaphase spindle and the cleavage furrow [4-6]. To gain insight into mechanisms that might underlie interdependence of the spindle and the cleavage furrow, we used RNA-mediated interference (RNAi) to study the effects of eliminating MKLP1 from Caenorhabditis elegans embryos. Surprisingly, in MKLP1(RNAi) embryos, spindle formation appears normal until late anaphase. Microtubule bundles form in the spindle interzone and the cleavage furrow assembles; anaphase and cleavage furrow ingression initially appear normal. The interzone bundles do not gather into a stable midbody, however, and furrow contraction always fails before complete closure. This sequence of relatively normal mitosis and a late failure of cytokinesis continues for many cell cycles. These and additional results suggest that the interzone microtubule bundles need MKLP1 to encourage the advance and stable closure of the cleavage furrow.

摘要

正在分裂的细胞需要协调染色体的分离与分裂平面的形成。有证据表明,后期纺锤体中间区的微管束以某种方式控制着分裂沟的位置和组装[1-3]。一种集中在中间区的微管马达蛋白MKLP1,此前已被证明与中期纺锤体和分裂沟的组装有关[4-6]。为了深入了解纺锤体和分裂沟相互依赖的潜在机制,我们使用RNA介导的干扰(RNAi)来研究从秀丽隐杆线虫胚胎中去除MKLP1的影响。令人惊讶的是,在MKLP1(RNAi)胚胎中,纺锤体形成在后期晚期之前看起来是正常的。微管束在纺锤体中间区形成,分裂沟组装;后期和分裂沟的内陷最初看起来是正常的。然而,中间区的微管束不会聚集形成稳定的中间体,并且在完全闭合之前,沟的收缩总是失败。这种相对正常的有丝分裂序列和后期胞质分裂失败会持续多个细胞周期。这些以及其他结果表明,中间区微管束需要MKLP1来促进分裂沟的推进和稳定闭合。

相似文献

1
A nematode kinesin required for cleavage furrow advancement.
Curr Biol. 1998 Oct 8;8(20):1133-6. doi: 10.1016/s0960-9822(98)70470-1.
2
Cortical centralspindlin and G alpha have parallel roles in furrow initiation in early C. elegans embryos.
J Cell Sci. 2007 May 15;120(Pt 10):1772-8. doi: 10.1242/jcs.03447. Epub 2007 Apr 24.
5
Cell cycle regulation of central spindle assembly.
Nature. 2004 Aug 19;430(7002):908-13. doi: 10.1038/nature02767. Epub 2004 Jul 28.
6
Cytokinetic furrowing in toroidal, binucleate and anucleate cells in C. elegans embryos.
J Cell Sci. 2008 Feb 1;121(Pt 3):306-16. doi: 10.1242/jcs.022897. Epub 2008 Jan 15.
7
Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis.
Curr Biol. 2005 Apr 26;15(8):778-86. doi: 10.1016/j.cub.2005.03.041.
8
Two phases of astral microtubule activity during cytokinesis in C. elegans embryos.
Dev Cell. 2006 Apr;10(4):509-20. doi: 10.1016/j.devcel.2006.03.001.
9
Condensin and the spindle midzone prevent cytokinesis failure induced by chromatin bridges in C. elegans embryos.
Curr Biol. 2013 Jun 3;23(11):937-46. doi: 10.1016/j.cub.2013.04.028. Epub 2013 May 16.
10
Analyzing the effects of delaying aster separation on furrow formation during cytokinesis in the Caenorhabditis elegans embryo.
Mol Biol Cell. 2010 Jan 1;21(1):50-62. doi: 10.1091/mbc.e09-01-0089. Epub 2009 Nov 4.

引用本文的文献

1
Centralspindlin-mediated transport of RhoGEF positions the cleavage plane for cytokinesis.
Sci Signal. 2023 Jul 4;16(792):eadh0601. doi: 10.1126/scisignal.adh0601.
2
Single-motor and multi-motor motility properties of kinesin-6 family members.
Biol Open. 2022 Oct 15;11(10). doi: 10.1242/bio.059533. Epub 2022 Oct 14.
3
Mechanistic insights into central spindle assembly mediated by the centralspindlin complex.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2112039118.
5
Classical and Emerging Regulatory Mechanisms of Cytokinesis in Animal Cells.
Biology (Basel). 2019 Jul 26;8(3):55. doi: 10.3390/biology8030055.
6
Strategies for Efficient Genome Editing Using CRISPR-Cas9.
Genetics. 2019 Feb;211(2):431-457. doi: 10.1534/genetics.118.301775. Epub 2018 Nov 30.
8
A GAP that Divides.
F1000Res. 2017 Oct 2;6:1788. doi: 10.12688/f1000research.12064.1. eCollection 2017.
9
Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6.
Mol Biol Cell. 2017 Jul 15;28(15):2042-2065. doi: 10.1091/mbc.E16-09-0644. Epub 2017 May 24.
10
Tum/RacGAP functions as a switch activating the Pav/kinesin-6 motor.
Nat Commun. 2016 Apr 19;7:11182. doi: 10.1038/ncomms11182.

本文引用的文献

10
Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos.
Cell. 1983 Nov;35(1):15-25. doi: 10.1016/0092-8674(83)90203-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验