Suppr超能文献

细胞内钙缓冲剂对大鼠新皮质锥体细胞神经末梢递质释放的调节

Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers.

作者信息

Ohana O, Sakmann B

机构信息

Abteilung Zellphysiologie, Max-Planck-Institut fur medizinische Forschung, Jahnstrasse 29, D-69120 Heidelberg, Germany.

出版信息

J Physiol. 1998 Nov 15;513 ( Pt 1)(Pt 1):135-48. doi: 10.1111/j.1469-7793.1998.135by.x.

Abstract
  1. Dual whole-cell voltage recordings were made from synaptically connected layer 5 (L5) pyramidal neurones in slices of the young (P14-P16) rat neocortex. The Ca2+ buffers BAPTA or EGTA were loaded into the presynaptic neurone via the pipette recording from the presynaptic neurone to examine their effect on the mean and the coefficient of variation (c.v.) of single fibre EPSP amplitudes, referred to as unitary EPSPs. 2. The fast Ca2+ buffer BAPTA reduced unitary EPSP amplitudes in a concentration dependent way. With 0.1 mM BAPTA in the pipette, the mean EPSP amplitude was reduced by 14 +/- 2.8% (mean +/- s.e.m., n = 7) compared with control pipette solution, whereas with 1.5 mM BAPTA, the mean EPSP amplitude was reduced by 72 +/- 1.5% (n = 5). The concentration of BAPTA that reduced mean EPSP amplitudes to one-half of control was close to 0.7 mM. 3. Saturation of BAPTA during evoked release was tested by comparing the effect of loading the presynaptic neurone with 0.1 mM BAPTA at 2 and 1 mM [Ca2+]o. Reducing [Ca2+]o from 2 to 1 mM, thereby reducing Ca2+ influx into the terminals, decreased the mean EPSP amplitude by 60 +/- 2.2% with control pipette solution and by 62 +/- 1.9% after loading with 0.1 mM BAPTA (n = 7). 4. The slow Ca2+ buffer EGTA at 1 mM reduced mean EPSP amplitudes by 15 +/- 2.5% (n = 5). With 10 mM EGTA mean EPSP amplitudes were reduced by 56 +/- 2.3 % (n = 4). 5. With both Ca2+ buffers, the reduction in mean EPSP amplitudes was associated with an increase in the c.v. of peak EPSP amplitudes, consistent with a reduction of the transmitter release probability as the major mechanism underlying the reduction of the EPSP amplitude. 6. The results suggest that in nerve terminals of thick tufted L5 pyramidal cells the endogenous mobile Ca2+ buffer is equivalent to less than 0.1 mM BAPTA and that at many release sites of pyramidal cell terminals the Ca2+ channel domains overlap, a situation comparable with that at large calyx-type terminals in the brainstem.
摘要
  1. 对幼年(P14 - P16)大鼠新皮质切片中通过突触连接的第5层(L5)锥体神经元进行双全细胞电压记录。将Ca²⁺缓冲剂BAPTA或EGTA通过记录突触前神经元的移液管加载到突触前神经元中,以研究它们对单纤维兴奋性突触后电位(EPSP)幅度(称为单位EPSP)的平均值和变异系数(c.v.)的影响。2. 快速Ca²⁺缓冲剂BAPTA以浓度依赖的方式降低单位EPSP幅度。移液管中含有0.1 mM BAPTA时,与对照移液管溶液相比,平均EPSP幅度降低了14±2.8%(平均值±标准误,n = 7),而含有1.5 mM BAPTA时,平均EPSP幅度降低了72±1.5%(n = 5)。将平均EPSP幅度降低至对照一半时的BAPTA浓度接近0.7 mM。3. 通过比较在2 mM和1 mM细胞外Ca²⁺浓度([Ca²⁺]o)下用0.1 mM BAPTA加载突触前神经元的效果,测试诱发释放过程中BAPTA的饱和度。将[Ca²⁺]o从2 mM降低到1 mM,从而减少Ca²⁺流入终末,使用对照移液管溶液时平均EPSP幅度降低了60±2.2%,用0.1 mM BAPTA加载后降低了62±1.9%(n = 7)。4. 1 mM的慢Ca²⁺缓冲剂EGTA使平均EPSP幅度降低了15±2.5%(n = 5)。10 mM EGTA时平均EPSP幅度降低了56±2.3%(n = 4)。5. 使用这两种Ca²⁺缓冲剂时,平均EPSP幅度的降低与EPSP峰值幅度的c.v.增加相关,这与递质释放概率降低作为EPSP幅度降低的主要机制一致。6. 结果表明,在厚簇状L5锥体细胞的神经终末中,内源性可移动Ca²⁺缓冲剂相当于小于0.1 mM的BAPTA,并且在锥体细胞终末的许多释放位点,Ca²⁺通道结构域重叠,这种情况与脑干中大花萼型终末的情况类似。

相似文献

1
Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers.
J Physiol. 1998 Nov 15;513 ( Pt 1)(Pt 1):135-48. doi: 10.1111/j.1469-7793.1998.135by.x.
3
Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex.
J Physiol. 1997 Apr 15;500 ( Pt 2)(Pt 2):409-40. doi: 10.1113/jphysiol.1997.sp022031.
4
Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat.
J Physiol. 1995 Dec 15;489 ( Pt 3)(Pt 3):825-40. doi: 10.1113/jphysiol.1995.sp021095.
5
Calcium currents, transmitter release and facilitation of release at voltage-clamped crayfish nerve terminals.
J Physiol. 1996 Oct 15;496 ( Pt 2)(Pt 2):363-78. doi: 10.1113/jphysiol.1996.sp021691.
6
Differential control of three after-hyperpolarizations in rat hippocampal neurones by intracellular calcium buffering.
J Physiol. 1999 May 15;517 ( Pt 1)(Pt 1):201-16. doi: 10.1111/j.1469-7793.1999.0201z.x.
8
Calcium dependence of depolarization-induced suppression of inhibition in rat hippocampal CA1 pyramidal neurons.
J Physiol. 1999 Nov 15;521 Pt 1(Pt 1):147-57. doi: 10.1111/j.1469-7793.1999.00147.x.
10
Mechanisms underlying short-term modulation of transmitter release by presynaptic depolarization.
J Physiol. 2009 Jun 15;587(Pt 12):2987-3000. doi: 10.1113/jphysiol.2009.168765. Epub 2009 Apr 29.

引用本文的文献

1
Roles and Sources of Calcium in Synaptic Exocytosis.
Adv Neurobiol. 2023;33:139-170. doi: 10.1007/978-3-031-34229-5_6.
2
Physiology of intracellular calcium buffering.
Physiol Rev. 2023 Oct 1;103(4):2767-2845. doi: 10.1152/physrev.00042.2022. Epub 2023 Jun 16.
3
Developmental and activity-dependent modulation of coupling distance between release site and Ca channel.
Front Cell Neurosci. 2022 Oct 26;16:1037721. doi: 10.3389/fncel.2022.1037721. eCollection 2022.
5
Presynaptic voltage-gated calcium channels in the auditory brainstem.
Mol Cell Neurosci. 2021 Apr;112:103609. doi: 10.1016/j.mcn.2021.103609. Epub 2021 Mar 1.
6
Presynaptic endoplasmic reticulum regulates short-term plasticity in hippocampal synapses.
Commun Biol. 2021 Feb 23;4(1):241. doi: 10.1038/s42003-021-01761-7.
7
Mechanisms and Functional Consequences of Presynaptic Homeostatic Plasticity at Auditory Nerve Synapses.
J Neurosci. 2020 Sep 2;40(36):6896-6909. doi: 10.1523/JNEUROSCI.1175-19.2020. Epub 2020 Aug 3.
8
Interstitial ions: A key regulator of state-dependent neural activity?
Prog Neurobiol. 2020 Oct;193:101802. doi: 10.1016/j.pneurobio.2020.101802. Epub 2020 May 13.
9
Perinatal interference with the serotonergic system affects VTA function in the adult via glutamate co-transmission.
Mol Psychiatry. 2021 Sep;26(9):4795-4812. doi: 10.1038/s41380-020-0763-z. Epub 2020 May 12.
10
Suppression of Presynaptic Glutamate Release by Postsynaptic Metabotropic NMDA Receptor Signalling to Pannexin-1.
J Neurosci. 2020 Jan 22;40(4):729-742. doi: 10.1523/JNEUROSCI.0257-19.2019. Epub 2019 Dec 9.

本文引用的文献

1
T-jump study of calcium binding kinetics of calcium chelators.
Cell Calcium. 1997 Oct;22(4):255-68. doi: 10.1016/s0143-4160(97)90064-6.
2
Spatial heterogeneity of intracellular Ca2+ signals in axons of basket cells from rat cerebellar slices.
J Physiol. 1997 Aug 1;502 ( Pt 3)(Pt 3):509-19. doi: 10.1111/j.1469-7793.1997.509bj.x.
4
The NEURON simulation environment.
Neural Comput. 1997 Aug 15;9(6):1179-209. doi: 10.1162/neco.1997.9.6.1179.
5
Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex.
J Physiol. 1997 Apr 15;500 ( Pt 2)(Pt 2):409-40. doi: 10.1113/jphysiol.1997.sp022031.
6
Calcium dynamics associated with a single action potential in a CNS presynaptic terminal.
Biophys J. 1997 Mar;72(3):1458-71. doi: 10.1016/S0006-3495(97)78792-7.
7
Involvement of pre- and postsynaptic mechanisms in posttetanic potentiation at Aplysia synapses.
Science. 1997 Feb 14;275(5302):969-73. doi: 10.1126/science.275.5302.969.
8
Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells.
Biophys J. 1997 Feb;72(2 Pt 1):674-90. doi: 10.1016/s0006-3495(97)78704-6.
9
Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons.
Neuron. 1996 Dec;17(6):1241-9. doi: 10.1016/s0896-6273(00)80254-8.
10
Calcium influx and transmitter release in a fast CNS synapse.
Nature. 1996 Oct 3;383(6599):431-4. doi: 10.1038/383431a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验