Whiteley J P, Gavaghan D J, Hahn C E
Radcliffe Infirmary, University of Oxford, Woodstock Road, Oxford, OX2 6HE, U.K.
J Theor Biol. 1998 Oct 21;194(4):517-39. doi: 10.1006/jtbi.1998.0772.
We consider two and 50 compartment lung models for use with two techniques used to investigate the efficiency of the lungs: the Multiple Breath Nitrogen Washout (MBNW) technique used for investigating the ventilation-volume distribution; and the Multiple Inert Gas Elimination Technique (MIGET) used for investigating the ventilation-perfusion distribution. In each of these techniques pulmonary respiratory gas exchange is described by conservation of mass equations which may be written in identical form, and in each the underlying distributions of ventilation to volume and ventilation to perfusion are assumed to be continuous functions (usually assumed to be a linear sum of log-normal distributions). The mathematical models used to describe the lung have predominantly used a collection of discrete compartments to approximate these continuous distributions. The most commonly used models have used one, two or 50 compartments. In this paper, we begin by showing that in the limit as the width of the peaks of the distribution tend to zero, the continuous distributions may be replaced by a single discrete compartment placed at each peak of the distribution. We investigate the various methods used previously for parameter recovery, and show that one commonly used method for the MBNW is not suitable and suggest a modification to this recovery technique. Using simulated error-free data, we show that both the two compartment model and the 50 compartment model contain information about the ventilation-volume (or ventilation-perfusion) distribution, and investigate the extent to which this information can be used to recover the parameters which define these distributions. We go on to use Monte-Carlo methods to investigate the stability of the recovery process.
我们考虑使用两种肺部模型(两室模型和50室模型),并结合两种用于研究肺部效率的技术:用于研究通气 - 容积分布的多次呼吸氮洗脱(MBNW)技术;以及用于研究通气 - 灌注分布的多惰性气体消除技术(MIGET)。在这些技术中的每一种中,肺呼吸气体交换都由质量守恒方程描述,这些方程可以写成相同的形式,并且在每种技术中,通气与容积以及通气与灌注的潜在分布都被假定为连续函数(通常假定为对数正态分布的线性和)。用于描述肺部的数学模型主要使用一组离散的隔室来近似这些连续分布。最常用的模型使用一室、两室或50室。在本文中,我们首先表明,当分布峰值的宽度趋于零时,连续分布可以由放置在分布每个峰值处的单个离散隔室代替。我们研究了先前用于参数恢复的各种方法,并表明一种常用于MBNW的方法不合适,并建议对这种恢复技术进行修改。使用无误差模拟数据,我们表明两室模型和50室模型都包含有关通气 - 容积(或通气 - 灌注)分布的信息,并研究了这些信息可用于恢复定义这些分布的参数的程度。我们接着使用蒙特卡罗方法来研究恢复过程的稳定性。