Suppr超能文献

异质性与细胞器基因动态变化

Heteroplasmy and organelle gene dynamics.

作者信息

Chesser R K

机构信息

Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.

出版信息

Genetics. 1998 Nov;150(3):1309-27. doi: 10.1093/genetics/150.3.1309.

Abstract

This study assesses factors that influence the rates of change of organelle gene diversity and the maintenance of heteroplasmy. Losses of organelle gene diversity within individuals via vegetative segregation during ontogeny are paramount to resultant spatial and temporal patterns. Steady-state losses of organelle variation from the zygote to the gametes are determined by the effective number of organelles, which will be approximately equal to the number of intracellular organelles if random segregation prevails. Both rapid increases in organelle number after zygote formation and reductions at germ lines will reduce variation within individuals. Terminal reductions in organelles must be to very low copy numbers (<5) for substantial losses in variation to occur rapidly. Nonrandom clonal expansion and vegetative segregation during gametogenesis may be effective in reducing genetic variation in gametes. If organelles are uniparentally inherited, the asymptotic expectations for effective numbers of gametes and spatial differentiation will be identical for homoplasmic and heteroplasmic conditions. The rate of attainment of asymptote for heteroplasmic organelles, however, is governed by the rate of loss of variation during ontogeny. With sex-biased dispersal, the effective number of gametes is maximized when the proportional contributions of the sex having the higher dispersal rate are low.

摘要

本研究评估了影响细胞器基因多样性变化率和异质性维持的因素。个体发育过程中通过营养分离导致的细胞器基因多样性丧失对于最终的时空模式至关重要。从合子到配子的细胞器变异稳态丧失由细胞器的有效数量决定,如果随机分离占主导,该数量将大致等于细胞内细胞器的数量。合子形成后细胞器数量的快速增加和生殖系中的减少都会降低个体内的变异。细胞器的终端减少必须达到非常低的拷贝数(<5),变异才会迅速大量丧失。配子发生过程中的非随机克隆扩增和营养分离可能有效地减少配子中的遗传变异。如果细胞器是单亲遗传的,对于同质性和异质性条件,配子有效数量的渐近期望和空间分化将是相同的。然而,异质性细胞器达到渐近线的速率由个体发育过程中的变异丧失速率决定。在有性别偏向的扩散情况下,当扩散速率较高的性别的比例贡献较低时,配子的有效数量最大。

相似文献

1
Heteroplasmy and organelle gene dynamics.
Genetics. 1998 Nov;150(3):1309-27. doi: 10.1093/genetics/150.3.1309.
3
Heteroplasmy and Patterns of Cytonuclear Linkage Disequilibrium in Wild Carrot.
Integr Comp Biol. 2019 Oct 1;59(4):1005-1015. doi: 10.1093/icb/icz102.
4
Disentangling Complex Inheritance Patterns of Plant Organellar Genomes: An Example From Carrot.
J Hered. 2020 Dec 7;111(6):531-538. doi: 10.1093/jhered/esaa037.
5
Intracellular selection, conversion bias, and the expected substitution rate of organelle genes.
Genetics. 1992 Apr;130(4):939-46. doi: 10.1093/genetics/130.4.939.
7
Why are most organelle genomes transmitted maternally?
Bioessays. 2015 Jan;37(1):80-94. doi: 10.1002/bies.201400110. Epub 2014 Oct 10.
8
The mutational hazard hypothesis of organelle genome evolution: 10 years on.
Mol Ecol. 2016 Aug;25(16):3769-75. doi: 10.1111/mec.13742. Epub 2016 Jul 29.
9
Natural Heteroplasmy and Mitochondrial Inheritance in Bivalve Molluscs.
Integr Comp Biol. 2019 Oct 1;59(4):1016-1032. doi: 10.1093/icb/icz061.
10
Avoiding organelle mutational meltdown across eukaryotes with or without a germline bottleneck.
PLoS Biol. 2021 Apr 23;19(4):e3001153. doi: 10.1371/journal.pbio.3001153. eCollection 2021 Apr.

引用本文的文献

本文引用的文献

1
Analyses of gene frequencies.
Genetics. 1973 Aug;74(4):679-700. doi: 10.1093/genetics/74.4.679.
2
Evolution in Mendelian Populations.
Genetics. 1931 Mar;16(2):97-159. doi: 10.1093/genetics/16.2.97.
4
Extranuclear differentiation and gene flow in the finite island model.
Genetics. 1985 Feb;109(2):441-57. doi: 10.1093/genetics/109.2.441.
8
Effective sizes and dynamics of uniparentally and diparentally inherited genes.
Genetics. 1996 Nov;144(3):1225-35. doi: 10.1093/genetics/144.3.1225.
9
Human brain contains high levels of heteroplasmy in the noncoding regions of mitochondrial DNA.
Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12382-7. doi: 10.1073/pnas.93.22.12382.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验