White S H, Wimley W C
Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4560, USA.
Biochim Biophys Acta. 1998 Nov 10;1376(3):339-52. doi: 10.1016/s0304-4157(98)00021-5.
The thermodynamic principles underlying the structural stability of membrane proteins are difficult to obtain directly from whole proteins because of intractable problems related to insolubility in the aqueous phase and extreme stability in the membrane phase. The principles must therefore be surmised from studies of the interactions of small peptides with lipid bilayers. This review is concerned with the hydrophobic interactions of such peptides with the interfacial regions of lipid bilayers. We first develop a general framework for thinking about the thermodynamics of membrane protein stability that centers on interfacial interactions and review the structural and chemical evidence that supports this interface-centered point of view. We then describe an experimentally determined whole-residue interfacial hydrophobicity scale that reveals the central role of the peptide bond in partitioning and folding. Finally, we consider the complexity and diversity of interfacial interactions revealed by differences between side-chain hydrophobicities determined using different classes of peptides.
由于与水相不溶性以及膜相中极端稳定性相关的棘手问题,直接从完整蛋白质中获取膜蛋白结构稳定性背后的热力学原理十分困难。因此,这些原理必须从小肽与脂质双层相互作用的研究中推测得出。本综述关注此类肽与脂质双层界面区域的疏水相互作用。我们首先构建一个以界面相互作用为核心的、用于思考膜蛋白稳定性热力学的通用框架,并回顾支持这种以界面为中心观点的结构和化学证据。然后,我们描述一个通过实验确定的全残基界面疏水性标度,该标度揭示了肽键在分配和折叠中的核心作用。最后,我们考虑使用不同类型肽测定的侧链疏水性差异所揭示的界面相互作用的复杂性和多样性。