Urushitani M, Shimohama S, Kihara T, Sawada H, Akaike A, Ibi M, Inoue R, Kitamura Y, Taniguchi T, Kimura J
Department of Neurology, Faculty of Medicine, Kyoto University, Japan.
Ann Neurol. 1998 Nov;44(5):796-807. doi: 10.1002/ana.410440514.
In this study, we analyzed the mechanism of selective motor neuronal death, a characteristic of amyotrophic lateral sclerosis, using embryonic rat spinal cord culture. When dissociated cultures were exposed to low-level glutamate (Glu) coadministered with the Glu transporter inhibitor L-trans-pyrrolidine-2,4-decarboxylate (PDC) for 24 hours, motor neurons were selectively injured through N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptors. Nitric oxide synthase (NOS) inhibitors attenuated this toxicity, and long-acting nitric oxide (NO) donors damaged motor neurons selectively. Nonmotor neurons survived after exposure to low-dose Glu/PDC, but Glu-induced toxicity was potentiated by coadministration of an NO-dependent guanylyl cyclase inhibitor. In addition, 8-bromo-cyclic GMP, a soluble cyclic GMP analogue, rescued nonmotor neurons, but not motor neurons, exposed to high-dose Glu/PDC. Twenty-four hours' incubation with PDC elevated the number of neuronal NOS-immunoreactive neurons by about twofold compared with controls, and a double-staining study, using the motor neuron marker SMI32, revealed that most of them were nonmotor neurons. These findings suggest that selective motor neuronal death caused by chronic low-level exposure to Glu is mediated by the formation of NO in nonmotor neurons, which inversely protects nonmotor neurons through the guanylyl cyclase-cyclic GMP cascade. Induction of neuronal NOS in nonmotor neurons might enhance both the toxicity of motor neurons and the protection of nonmotor neurons, which could explain the pathology of amyotrophic lateral sclerosis.
在本研究中,我们利用胚胎大鼠脊髓培养物分析了选择性运动神经元死亡的机制,这是肌萎缩侧索硬化的一个特征。当解离培养物暴露于与谷氨酸转运体抑制剂L-反式-脯氨酸-2,4-二羧酸(PDC)共同给予的低水平谷氨酸(Glu)中24小时时,运动神经元通过N-甲基-D-天冬氨酸(NMDA)和α-氨基-3-羟基-5-甲基异恶唑-4-丙酸(AMPA)/海人藻酸受体被选择性损伤。一氧化氮合酶(NOS)抑制剂可减轻这种毒性,而长效一氧化氮(NO)供体则选择性地损伤运动神经元。非运动神经元在暴露于低剂量Glu/PDC后存活,但Glu诱导的毒性通过共同给予NO依赖性鸟苷酸环化酶抑制剂而增强。此外,一种可溶性环鸟苷酸类似物8-溴环鸟苷酸可挽救暴露于高剂量Glu/PDC的非运动神经元,但不能挽救运动神经元。与对照组相比,用PDC孵育24小时可使神经元型NOS免疫反应性神经元的数量增加约两倍,并且使用运动神经元标志物SMI32进行的双重染色研究表明,其中大多数是非运动神经元。这些发现表明,慢性低水平暴露于Glu引起的选择性运动神经元死亡是由非运动神经元中NO的形成介导的,其通过鸟苷酸环化酶-环鸟苷酸级联反应反向保护非运动神经元。非运动神经元中神经元型NOS的诱导可能会增强运动神经元的毒性和非运动神经元的保护作用,这可以解释肌萎缩侧索硬化的病理情况。