Ronin Institute, Montclair, New Jersey, United States of America.
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona, United States of America.
PLoS Comput Biol. 2023 Mar 3;19(3):e1010941. doi: 10.1371/journal.pcbi.1010941. eCollection 2023 Mar.
As researchers develop computational models of neural systems with increasing sophistication and scale, it is often the case that fully de novo model development is impractical and inefficient. Thus arises a critical need to quickly find, evaluate, re-use, and build upon models and model components developed by other researchers. We introduce the NeuroML Database (NeuroML-DB.org), which has been developed to address this need and to complement other model sharing resources. NeuroML-DB stores over 1,500 previously published models of ion channels, cells, and networks that have been translated to the modular NeuroML model description language. The database also provides reciprocal links to other neuroscience model databases (ModelDB, Open Source Brain) as well as access to the original model publications (PubMed). These links along with Neuroscience Information Framework (NIF) search functionality provide deep integration with other neuroscience community modeling resources and greatly facilitate the task of finding suitable models for reuse. Serving as an intermediate language, NeuroML and its tooling ecosystem enable efficient translation of models to other popular simulator formats. The modular nature also enables efficient analysis of a large number of models and inspection of their properties. Search capabilities of the database, together with web-based, programmable online interfaces, allow the community of researchers to rapidly assess stored model electrophysiology, morphology, and computational complexity properties. We use these capabilities to perform a database-scale analysis of neuron and ion channel models and describe a novel tetrahedral structure formed by cell model clusters in the space of model properties and features. This analysis provides further information about model similarity to enrich database search.
随着研究人员开发越来越复杂和大规模的神经系统计算模型,从头开始完全开发模型通常是不切实际和低效的。因此,迫切需要快速找到、评估、重用和扩展其他研究人员开发的模型和模型组件。我们引入了 NeuroML 数据库(NeuroML-DB.org),它是为满足这一需求而开发的,并补充了其他模型共享资源。NeuroML-DB 存储了 1500 多个以前发布的离子通道、细胞和网络模型,这些模型已经被翻译成模块化的 NeuroML 模型描述语言。该数据库还提供了与其他神经科学模型数据库(ModelDB、Open Source Brain)的相互链接,以及对原始模型出版物(PubMed)的访问。这些链接以及 Neuroscience Information Framework(NIF)搜索功能,与其他神经科学社区建模资源实现了深度集成,极大地简化了查找适合重用的模型的任务。作为一种中间语言,NeuroML 及其工具生态系统能够高效地将模型转换为其他流行的模拟器格式。模块化特性还能够高效地分析大量模型并检查其属性。数据库的搜索功能以及基于网络的可编程在线接口,使研究人员社区能够快速评估存储模型的电生理学、形态学和计算复杂性属性。我们使用这些功能对神经元和离子通道模型进行了数据库规模的分析,并描述了模型属性和特征空间中由细胞模型簇形成的新型四面体结构。这种分析提供了有关模型相似性的更多信息,以丰富数据库搜索。