Suppr超能文献

弱共同平行纤维突触解释了在大鼠小脑高尔基细胞之间观察到的松散同步性。

Weak common parallel fibre synapses explain the loose synchrony observed between rat cerebellar golgi cells.

作者信息

Maex R, Vos B P, De Schutter E

机构信息

Born-Bunge Foundation, University of Antwerp - UIA, B-2610 Antwerp, Belgium.

出版信息

J Physiol. 2000 Feb 15;523 Pt 1(Pt 1):175-92. doi: 10.1111/j.1469-7793.2000.t01-1-00175.x.

Abstract
  1. In anaesthetized rats, pairs of cerebellar Golgi cells fired synchronously at rest, provided they were aligned along the parallel fibre axis. The observed synchrony was much less precise, however, than that which would be expected to result from common, monosynaptic parallel fibre excitation. 2. To explain this discrepancy, the precision and frequency of spike synchronization (i.e. the width and area of the central peak on the spike train cross-correlogram) were computed in a generic model for varying input, synaptic and neuronal parameters. 3. Correlation peaks between model neurons became broader, and peak area smaller, when the number of afferents increased and each single synapse decreased proportionally in strength. Peak width was inversely proportional to firing rate, but independent of the percentage of shared afferents. Peak area, in contrast, scaled with the percentage of shared afferents but was almost firing rate independent. 4. Broad correlation peaks between pairs of model neurons resulted from the loose spike timing between single model neurons and their afferents. This loose timing reflected a need for long-term synaptic integration to fire the neurons. Model neurons could accomplish this through firing rate adaptation mediated by a Ca2+-activated K+ channel. 5. We conclude that loose synchrony may be entirely explained by shared input from monosynaptic, non-synchronized afferents. The inverse relationship between peak width and firing rate allowed us to distinguish common parallel fibre input from firing rate covariance as a primary cause of loose synchrony between cerebellar Golgi cells in anaesthetized rats.
摘要
  1. 在麻醉大鼠中,成对的小脑高尔基细胞在静息时同步放电,前提是它们沿平行纤维轴排列。然而,观察到的同步性远不如由常见的单突触平行纤维兴奋所预期的那样精确。2. 为了解释这种差异,在一个通用模型中计算了不同输入、突触和神经元参数下的尖峰同步精度和频率(即尖峰序列互相关图上中心峰的宽度和面积)。3. 当传入纤维数量增加且每个单突触强度成比例减小时,模型神经元之间的相关峰变宽,峰面积变小。峰宽与放电率成反比,但与共享传入纤维的百分比无关。相比之下,峰面积与共享传入纤维的百分比成比例,但几乎与放电率无关。4. 模型神经元对之间较宽的相关峰是由单个模型神经元与其传入纤维之间宽松的尖峰时间引起的。这种宽松的时间反映了神经元放电需要长期的突触整合。模型神经元可以通过由钙激活钾通道介导的放电率适应来实现这一点。5. 我们得出结论,宽松的同步性可能完全由单突触、非同步传入纤维的共享输入来解释。峰宽与放电率之间的反比关系使我们能够区分常见的平行纤维输入与放电率协方差,将其作为麻醉大鼠小脑高尔基细胞之间宽松同步的主要原因。

相似文献

6
Synaptic integration in a model of cerebellar granule cells.小脑颗粒细胞模型中的突触整合
J Neurophysiol. 1994 Aug;72(2):999-1009. doi: 10.1152/jn.1994.72.2.999.

引用本文的文献

4
Reconstruction and Simulation of a Scaffold Model of the Cerebellar Network.小脑网络支架模型的重建与模拟
Front Neuroinform. 2019 May 15;13:37. doi: 10.3389/fninf.2019.00037. eCollection 2019.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验