Lobel E, Kleine J F, Bihan D L, Leroy-Willig A, Berthoz A
Service Hospitalier Frédéric Joliot, Commissariat à l'Energie Atomique, 91406 Orsay, France.
J Neurophysiol. 1998 Nov;80(5):2699-709. doi: 10.1152/jn.1998.80.5.2699.
The cortical processing of vestibular information is not hierarchically organized as the processing of signals in the visual and auditory modalities. Anatomic and electrophysiological studies in the monkey revealed the existence of multiple interconnected areas in which vestibular signals converge with visual and/or somatosensory inputs. Although recent functional imaging studies using caloric vestibular stimulation (CVS) suggest that vestibular signals in the human cerebral cortex may be similarly distributed, some areas that apparently form essential constituents of the monkey cortical vestibular system have not yet been identified in humans. Galvanic vestibular stimulation (GVS) has been used for almost 200 years for the exploration of the vestibular system. By contrast with CVS, which mediates its effects mainly via the semicircular canals (SCC), GVS has been shown to act equally on SCC and otolith afferents. Because galvanic stimuli can be controlled precisely, GVS is suited ideally for the investigation of the vestibular cortex by means of functional imaging techniques. We studied the brain areas activated by sinusoidal GVS using functional magnetic resonance imaging (fMRI). An adapted set-up including LC filters tuned for resonance at the Larmor frequency protected the volunteers against burns through radio-frequency pickup by the stimulation electrodes. Control experiments ensured that potentially harmful effects or degradation of the functional images did not occur. Six male, right-handed volunteers participated in the study. In all of them, GVS induced clear perceptions of body movement and moderate cutaneous sensations at the electrode sites. Comparison with anatomic data on the primate cortical vestibular system and with imaging studies using somatosensory stimulation indicated that most activation foci could be related to the vestibular component of the stimulus. Activation appeared in the region of the temporo-parietal junction, the central sulcus, and the intraparietal sulcus. These areas may be analogous to areas PIVC, 3aV, and 2v, respectively, which form in the monkey brain, the "inner vestibular circle". Activation also occurred in premotor regions of the frontal lobe. Although undetected in previous imaging-studies using CVS, involvement of these areas could be predicted from anatomic data showing projections from the anterior ventral part of area 6 to the inner vestibular circle and the vestibular nuclei. Using a simple paradigm, we showed that GVS can be implemented safely in the fMRI environment. Manipulating stimulus waveforms and thus the GVS-induced subjective vestibular sensations in future imaging studies may yield further insights into the cortical processing of vestibular signals.
前庭信息的皮质处理不像视觉和听觉模式中的信号处理那样呈层级组织。对猴子的解剖学和电生理学研究揭示了多个相互连接的区域的存在,在前庭信号与视觉和/或体感输入在此汇聚。尽管最近使用冷热前庭刺激(CVS)的功能成像研究表明,人类大脑皮质中的前庭信号可能有类似的分布,但一些明显构成猴子皮质前庭系统重要组成部分的区域在人类中尚未得到确认。电刺激前庭刺激(GVS)已被用于探索前庭系统近200年。与主要通过半规管(SCC)介导其效应的CVS不同,GVS已被证明对SCC和耳石传入神经有同等作用。由于电刺激可以精确控制,GVS非常适合通过功能成像技术研究前庭皮质。我们使用功能磁共振成像(fMRI)研究了正弦GVS激活的脑区。一种经过改进的设置,包括在拉莫尔频率调谐共振的LC滤波器,保护志愿者免受刺激电极射频拾取造成的灼伤。对照实验确保不会发生对功能图像的潜在有害影响或图像质量下降。六名右利手男性志愿者参与了这项研究。在所有志愿者中,GVS都引起了明显的身体运动感知和电极部位适度的皮肤感觉。与灵长类动物皮质前庭系统的解剖学数据以及使用体感刺激的成像研究进行比较表明,大多数激活灶可能与刺激的前庭成分有关。激活出现在颞顶交界区、中央沟和顶内沟区域。这些区域可能分别类似于在猴子大脑中形成“内前庭圈”的PIVC、3aV和2v区域。额叶的运动前区也出现了激活。尽管在以前使用CVS的成像研究中未检测到这些区域的参与,但从显示6区腹侧前部向前庭内圈和前庭核投射的解剖学数据可以预测到这些区域的参与。通过一个简单的范式,我们表明GVS可以在fMRI环境中安全实施。在未来的成像研究中操纵刺激波形,从而操纵GVS诱导的主观前庭感觉,可能会进一步深入了解前庭信号的皮质处理。