Suppr超能文献

新型喹诺酮类抗生素卡他唑林抑制翻译的结构基础。

Structural basis of translation inhibition by cadazolid, a novel quinoxolidinone antibiotic.

机构信息

ETH Zurich, Department of Biology, Zurich, Switzerland.

Actelion Pharmaceuticals Ltd, Allschwil, Switzerland.

出版信息

Sci Rep. 2019 Apr 4;9(1):5634. doi: 10.1038/s41598-019-42155-4.

Abstract

Oxazolidinones are synthetic antibiotics used for treatment of infections caused by Gram-positive bacteria. They target the bacterial protein synthesis machinery by binding to the peptidyl transferase centre (PTC) of the ribosome and interfering with the peptidyl transferase reaction. Cadazolid is the first member of quinoxolidinone antibiotics, which are characterized by combining the pharmacophores of oxazolidinones and fluoroquinolones, and it is evaluated for treatment of Clostridium difficile gastrointestinal infections that frequently occur in hospitalized patients. In vitro protein synthesis inhibition by cadazolid was shown in Escherichia coli and Staphylococcus aureus, including an isolate resistant against linezolid, the prototypical oxazolidinone antibiotic. To better understand the mechanism of inhibition, we determined a 3.0 Å cryo-electron microscopy structure of cadazolid bound to the E. coli ribosome in complex with mRNA and initiator tRNA. Here we show that cadazolid binds with its oxazolidinone moiety in a binding pocket in close vicinity of the PTC as observed previously for linezolid, and that it extends its unique fluoroquinolone moiety towards the A-site of the PTC. In this position, the drug inhibits protein synthesis by interfering with the binding of tRNA to the A-site, suggesting that its chemical features also can enable the inhibition of linezolid-resistant strains.

摘要

恶唑烷酮类是用于治疗革兰氏阳性菌引起的感染的合成抗生素。它们通过与核糖体的肽酰转移酶中心(PTC)结合并干扰肽酰转移酶反应来靶向细菌的蛋白质合成机制。卡他唑是喹诺酮类抗生素的第一个成员,其特点是结合了恶唑烷酮类和氟喹诺酮类的药效团,用于治疗经常发生在住院患者中的艰难梭菌胃肠道感染。在大肠杆菌和金黄色葡萄球菌中显示了卡他唑的体外蛋白质合成抑制作用,包括对利奈唑胺(典型的恶唑烷酮类抗生素)耐药的分离株。为了更好地了解抑制机制,我们确定了与大肠杆菌核糖体、mRNA 和起始 tRNA 复合物结合的卡他唑的 3.0Å 冷冻电子显微镜结构。在这里,我们表明卡他唑的恶唑烷酮部分与 PTC 附近的结合口袋结合,如先前观察到的利奈唑胺,并且它将其独特的氟喹诺酮部分延伸到 PTC 的 A 位。在这个位置,药物通过干扰 tRNA 与 A 位的结合来抑制蛋白质合成,这表明其化学特征也可以使耐利奈唑胺的菌株受到抑制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/331f/6449356/310ebd1541e8/41598_2019_42155_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验