Young K, Soher B J, Maudsley A A
Department of Radiology, University of California San Francisco, DVA Medical Center, 94121, USA.
Magn Reson Med. 1998 Dec;40(6):816-21. doi: 10.1002/mrm.1910400606.
An iterative method for differentiating between known resonances and uncharacterized baseline contributions in MR spectra is described. The method alternates parametric modeling, using a priori knowledge of spectral parameters, with non-parametric characterization of remaining signal components, using wavelet shrinkage and denoising. Rapid convergence of the iterative method is demonstrated, and examples are shown for analysis of simulated data and an in vivo 1H spectrum from the brain. Results show good separation between metabolite signals and strong baseline contributions.
本文描述了一种用于区分磁共振波谱中已知共振峰和未表征基线贡献的迭代方法。该方法交替进行参数建模(利用光谱参数的先验知识)和剩余信号成分的非参数表征(利用小波收缩和去噪)。证明了迭代方法的快速收敛性,并给出了模拟数据分析和大脑体内1H谱分析的示例。结果表明代谢物信号与强基线贡献之间有良好的分离效果。