Suppr超能文献

自动光谱分析II:小波收缩在非参数信号特征描述中的应用。

Automated spectral analysis II: application of wavelet shrinkage for characterization of non-parameterized signals.

作者信息

Young K, Soher B J, Maudsley A A

机构信息

Department of Radiology, University of California San Francisco, DVA Medical Center, 94121, USA.

出版信息

Magn Reson Med. 1998 Dec;40(6):816-21. doi: 10.1002/mrm.1910400606.

Abstract

An iterative method for differentiating between known resonances and uncharacterized baseline contributions in MR spectra is described. The method alternates parametric modeling, using a priori knowledge of spectral parameters, with non-parametric characterization of remaining signal components, using wavelet shrinkage and denoising. Rapid convergence of the iterative method is demonstrated, and examples are shown for analysis of simulated data and an in vivo 1H spectrum from the brain. Results show good separation between metabolite signals and strong baseline contributions.

摘要

本文描述了一种用于区分磁共振波谱中已知共振峰和未表征基线贡献的迭代方法。该方法交替进行参数建模(利用光谱参数的先验知识)和剩余信号成分的非参数表征(利用小波收缩和去噪)。证明了迭代方法的快速收敛性,并给出了模拟数据分析和大脑体内1H谱分析的示例。结果表明代谢物信号与强基线贡献之间有良好的分离效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验