Suppr超能文献

利用定点诱变技术鉴定大肠杆菌分支酸变位酶-预苯酸脱氢酶催化的各反应的特异性残基。

Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli.

作者信息

Christendat D, Saridakis V C, Turnbull J L

机构信息

Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada.

出版信息

Biochemistry. 1998 Nov 10;37(45):15703-12. doi: 10.1021/bi981412b.

Abstract

Site-directed mutagenesis was performed on the bifunctional enzyme chorismate mutase-prephenate dehydrogenase in order to identify groups important for each of the two reactions. We selected two residues for mutagenesis, Lys37 and His131, identified previously by differential peptide mapping to be essential for activity [Christendat, D., and Turnbull, J. (1996) Biochemistry 35, 4468-4479]. Kinetic studies reveal that K37Q exhibits no mutase activity while retaining wild-type dehydrogenase activity, verifying that Lys37 plays a key role in the mutase. By contrast His131 is not critical for the dehydrogenase; H131A is a reasonably efficient catalyst exhibiting 10% dehydrogenase and 30% mutase activity compared to the wild-type enzyme. Chemical modification of H131A by diethyl pyrocarbonate further inactivated the dehydrogenase, suggesting that a different histidine is now accessible to modification. To identify this group, the protein's remaining eight histidines were changed to alanine or asparagine. A single substitution, H197N, decreased the dehydrogenase activity by 5 orders of magnitude while full mutase activity was retained. In H197N, the Michaelis constants for prephenate and NAD+ and the mutant's elution profile from Sepharose-AMP were similar to those of wild-type enzyme, indicating that catalysis rather than substrate binding is altered. Log V for the dehydrogenase reaction catalyzed by H197N is pH-independent and is in contrast to wild-type enzyme, which shows a decrease in activity at low pH and pK of about 6.5. We conclude that His197 is an essential catalytic residue in the dehydrogenase reaction.

摘要

为了确定对双功能酶分支酸变位酶-预苯酸脱氢酶的两个反应各自重要的基团,进行了定点诱变。我们选择了两个残基进行诱变,即赖氨酸37(Lys37)和组氨酸131(His131),它们先前通过差异肽图谱分析被确定为活性所必需的[克里斯滕达特,D.,和特恩布尔,J.(1996年)《生物化学》35卷,4468 - 4479页]。动力学研究表明,K37Q没有分支酸变位酶活性,但保留了野生型脱氢酶活性,这证实了赖氨酸37在分支酸变位酶中起关键作用。相比之下,组氨酸131对脱氢酶并不关键;与野生型酶相比,H131A是一种相当有效的催化剂,具有10%的脱氢酶活性和30%的分支酸变位酶活性。焦碳酸二乙酯对H131A的化学修饰进一步使脱氢酶失活,这表明现在有一个不同的组氨酸可被修饰。为了确定这个基团,将该蛋白质其余的八个组氨酸都替换为丙氨酸或天冬酰胺。单一替换H197N使脱氢酶活性降低了5个数量级,同时保留了完整的分支酸变位酶活性。在H197N中,预苯酸和NAD⁺的米氏常数以及该突变体从琼脂糖-AMP上的洗脱曲线与野生型酶相似,这表明是催化作用而不是底物结合发生了改变。H197N催化的脱氢酶反应的对数V与pH无关,这与野生型酶形成对比,野生型酶在低pH时活性降低,其pK约为6.5。我们得出结论,组氨酸197是脱氢酶反应中一个必需的催化残基。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验