Suppr超能文献

使用来自一项关于固体剂型的盖伦制剂研究的数据,人工神经网络(ANNs)作为一种替代建模技术,用于显示非线性关系的数据集的优势。

Advantages of Artificial Neural Networks (ANNs) as alternative modelling technique for data sets showing non-linear relationships using data from a galenical study on a solid dosage form.

作者信息

Bourquin J, Schmidli H, van Hoogevest P, Leuenberger H

机构信息

Pharmaceutical and Analytical Development, Novartis Pharma AG, K-401. 2.67, CH-4002 Basel, Switzerland.

出版信息

Eur J Pharm Sci. 1998 Dec;7(1):5-16. doi: 10.1016/s0928-0987(97)10028-8.

Abstract

Artificial Neural Networks (ANN) methodology was used to assess experimental data from a tablet compression study showing highly non-linear relationships (i.e. measurements of ejection forces) and compared to classical modelling technique (i.e. Response Surface Methodology, RSM). These kinds of relationships are known to be difficult to model using classical methods. The aim of this investigation was to quantitatively describe the achieved degree of data fitting and predicting abilities of the developed models. The comparison between the ANN and RSM was carried out both graphically and numerically. For comparing the goodness of fit, all data were used, whereas for the goodness of prediction the data were split into a learning and a validation data set. Better results were achieved for the model using ANN methodology with regard to data fitting and predicting ability. All determined ejection properties were mainly influenced by the concentration of magnesium stearate and silica aerogel, whereas the other factors showed very much lower effects. Important relationships could be recognised from the ANN model only, whereas the RSM model ignored them. The ANN methodology represents a useful alternative to classical modelling techniques when applied to variable data sets presenting non-linear relationships.

摘要

采用人工神经网络(ANN)方法评估来自片剂压制研究的实验数据,该数据呈现出高度非线性关系(即顶出力的测量值),并与经典建模技术(即响应曲面法,RSM)进行比较。已知这类关系很难用经典方法进行建模。本研究的目的是定量描述所开发模型的数据拟合程度和预测能力。对ANN和RSM进行了图形和数值比较。为了比较拟合优度,使用了所有数据,而对于预测优度,数据被分为学习数据集和验证数据集。就数据拟合和预测能力而言,使用ANN方法的模型取得了更好的结果。所有测定的顶出性能主要受硬脂酸镁和二氧化硅气凝胶浓度的影响,而其他因素的影响则小得多。重要关系只能从ANN模型中识别出来,而RSM模型忽略了这些关系。当应用于呈现非线性关系的可变数据集时,ANN方法是经典建模技术的一种有用替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验