Tsai F, Curran J F
Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, USA.
RNA. 1998 Dec;4(12):1514-22. doi: 10.1017/s1355838298981274.
We present a novel missense suppression system for the selection of tRNA(2GIn) mutants that can efficiently translate the CGA (arginine) codon as glutamine. tRNA(2Gln) mutants were cloned from a partially randomized synthetic gene pool using a plasmid vector that simultaneously expresses the tRNA gene and, to ensure efficient aminoacylation, the glutamine aminoacyl-tRNA synthetase gene (glnS). tRNA mutants that insert glutamine at CGA were selected as missense suppressors of a lacZ mutant (lacZ625(CGA)) that contains CGA substituted for an essential glutamine codon. Preliminary characterizations of four suppressors is presented. All of them contain two anticodon mutations: C-->U at position 34 and U-->C at position 35, which allow for cognate translation of CGA. U35 was previously shown to be an important determinant for glutaminylation of tRNA(2Gln) in vitro; suppression in vivo requires overexpression of the glutaminyl-tRNA synthetase gene (glnS). One tRNA variant contains no further mutations and has the highest missense suppression activity (8%). Three other isolates each contain an additional point mutation that alters suppression efficiency. This system will be useful for further studies of tRNA structure and function. In addition, because relatively efficient translation of the rare CGA codon as glutamine is not toxic for Escherichia coli, it may be possible to translate this sense codon with other alternate meanings, a property which could greatly facilitate protein engineering.
我们提出了一种新型错义抑制系统,用于筛选能够将CGA(精氨酸)密码子高效翻译为谷氨酰胺的tRNA(2GIn)突变体。使用一种质粒载体从部分随机合成基因库中克隆tRNA(2Gln)突变体,该质粒载体同时表达tRNA基因,并为确保高效氨酰化而表达谷氨酰胺氨酰-tRNA合成酶基因(glnS)。在含有CGA替代必需谷氨酰胺密码子的lacZ突变体(lacZ625(CGA))中,将在CGA处插入谷氨酰胺的tRNA突变体选为错义抑制子。文中展示了对四种抑制子的初步表征。它们都含有两个反密码子突变:第34位的C→U和第35位的U→C,这使得能够对CGA进行同源翻译。之前已证明U35是体外tRNA(2Gln)谷氨酰胺化的一个重要决定因素;体内抑制需要谷氨酰胺氨酰-tRNA合成酶基因(glnS)的过表达。一种tRNA变体没有进一步的突变,并且具有最高的错义抑制活性(8%)。其他三个分离株各自含有一个额外的点突变,该突变改变了抑制效率。该系统将有助于对tRNA结构和功能进行进一步研究。此外,由于将罕见的CGA密码子相对高效地翻译为谷氨酰胺对大肠杆菌无毒,所以有可能将这个有义密码子翻译为其他不同的含义,这一特性可能会极大地促进蛋白质工程。