Bischoff P, Plümer L, Scholz J, Drögemeier K, von Knobelsdorff G, Schulte am Esch J
Aus der Klinik für Anästhesiologie, Universitäts-Krankenhaus Eppendorf, Hamburg.
Anaesthesiol Reanim. 1998;23(5):116-23.
Electrophysiological parameters are well-suited to detect changes in cerebral function. The present study investigates whether balanced anaesthesia with remifentanil during nociceptive stimulation is associated with changes in clinical and electrophysiological parameters indicating inadequate depth of anaesthesia. Following IRB approval and written informed consent, 23 patients (ASA: I; age: 36 +/- 11) scheduled for elective gynaecological laparoscopy were included in the study. Without any premedication, anaesthesia was induced with remifentanil (1.0 microgram/kg bolus injection), propofol (0.5 mg/kg added by repetitive (10 mg) bolus injections every 10 s until unconciousness) and vecuronium (0.1 mg/kg). Following endotracheal intubation (normoventilation: PetCO2: 36 bis 38 mmHg), remifentanil infusion was started with continuous doses of 0.5 microgram/kg/min over 5 minutes and maintained with 0.25 microgram/kg/min during surgery. Remifentanil was randomly combined with propofol (group 1: 100 micrograms/kg/min; n = 7), enflurane (group 2: 0.5 MAC; n = 8) or isoflurane (group 3: 0.5 MAC; n = 8). Monitoring included: heart rate (beats/min), mean arterial pressure (mmHg), oxygen saturation (%), endtidal CO2 (mmHg) and endtidal enflurane and isoflurane (%). EEG: 2-channel recordings of Fz versus mastoid and ECG (artefact control) during steady-state anaesthesia and surgery. Following fast-fourier-transformation (4 s; 256/s; 0.5 to 35.0 Hz), spectral power densities were calculated for the selected frequency bands. Auditory evoked potentials (AEP; middle latency) were registered simultaneously after binaural stimulation via head-phones click-stimulation (6 Hz; 75 dB above hearing threshold; 512 stimulations per average). Bandpass was 0.01 to 2.0 kHz.
Na, Pa, Nb (latencies; ms) and peak-to-peak amplitudes (NaPa, PaNb; microV). EEG and AEP recording technique [15]. The study protocol included baseline values from pre-intubation, pre-surgery, the respective post-stimulation values (1 min, 3 min, 5 min) and all data at five-minute intervals during surgery until emergence from anaesthesia. During steady-state study conditions with defined remifentanil applications, mean data indicate that in response to nociceptive stimuli no changes in clinical or electrophysiological parameters were observed. In contrast to other studies using different anaesthetic techniques, the present data from remifentanil indicate very stable haemodynamic and electrophysiological parameters (EEG, AEP) during noxious stimulations. Adjustable and with no plasma accumulation, remifentanil demonstrates potent antinociceptive effects resulting in signs of adequate anaesthesia.
电生理参数非常适合检测脑功能的变化。本研究调查在伤害性刺激期间使用瑞芬太尼进行平衡麻醉是否与表明麻醉深度不足的临床和电生理参数变化相关。经机构审查委员会批准并获得书面知情同意后,23例计划进行择期妇科腹腔镜手术的患者(美国麻醉医师协会分级:I级;年龄:36±11岁)被纳入本研究。在未使用任何术前用药的情况下,用瑞芬太尼(1.0微克/千克静脉推注)、丙泊酚(0.5毫克/千克,每10秒重复推注10毫克直至意识消失)和维库溴铵(0.1毫克/千克)诱导麻醉。气管插管后(正常通气:呼气末二氧化碳分压:36至38毫米汞柱),开始输注瑞芬太尼,持续剂量为0.5微克/千克/分钟,持续5分钟,手术期间维持剂量为0.25微克/千克/分钟。瑞芬太尼随机与丙泊酚(第1组:100微克/千克/分钟;n = 7)、恩氟烷(第2组:0.5最低肺泡浓度;n = 8)或异氟烷(第3组:0.5最低肺泡浓度;n = 8)联合使用。监测指标包括:心率(次/分钟)、平均动脉压(毫米汞柱)、血氧饱和度(%)、呼气末二氧化碳(毫米汞柱)以及呼气末恩氟烷和异氟烷(%)。脑电图:在稳态麻醉和手术期间,记录Fz与乳突之间的双导联脑电图以及心电图(用于控制伪迹)。经过快速傅里叶变换(4秒;256/秒;0.5至35.0赫兹)后,计算选定频段的频谱功率密度。通过头戴式耳机点击刺激(6赫兹;高于听阈75分贝;平均512次刺激)双耳同时记录听觉诱发电位(AEP;中潜伏期)。带通为0.01至2.0千赫兹。
Nₐ、Pₐ、Nb(潜伏期;毫秒)以及峰峰值幅度(NₐPₐ、PₐNb;微伏)。脑电图和听觉诱发电位记录技术[15]。研究方案包括插管前、手术前的基线值,各自的刺激后值(1分钟、3分钟、5分钟)以及手术期间直至麻醉苏醒每隔5分钟的所有数据。在使用特定瑞芬太尼的稳态研究条件下,平均数据表明,在对伤害性刺激的反应中,未观察到临床或电生理参数的变化。与使用不同麻醉技术的其他研究相反,来自瑞芬太尼的当前数据表明在有害刺激期间血流动力学和电生理参数(脑电图、听觉诱发电位)非常稳定。瑞芬太尼可调节且无血浆蓄积,显示出强大的抗伤害作用,从而产生充分麻醉的体征。