Suppr超能文献

发育中肺脏的盐和水跨肺泡上皮转运:功能与近期分子生物学进展的相关性(综述)

Salt and water transport across the alveolar epithelium in the developing lung: correlations between function and recent molecular biology advances (Review).

作者信息

Folkesson H G, Norlin A, Baines D L

机构信息

Department of Animal Physiology, Lund University, Sweden.

出版信息

Int J Mol Med. 1998 Nov;2(5):515-31. doi: 10.3892/ijmm.2.5.515.

Abstract

Significant progress have been made in understanding the mechanisms of alveolar fluid clearance at the time of birth and the transition from placental oxygenation to air breathing. During fetal life, the mammalian lung is a fluid filled secretory organ that fills no respiratory function. Its potential air spaces are filled with fluid that is actively secreted in response to an osmotic force generated by Cl(-)-secretion and the fluid-filled lung is necessary for a proper development of the air-breathing lung. As term approaches, net Cl(-)-secretion decreases, which is accompanied by a decreased secretion rate of the fluid into the air spaces. Concomitantly with the decreased Cl(-)-secretion, the alveolar epithelium begins to absorb Na+ to prepare for fluid absorption and the air breathing life. The causes for the decreased Cl(-)-secretion and the beginning of the Na+ absorption are not clear. Alterations in the hormonal milieu of the lung as well as changes in plasma stress hormone levels have been suggested to play roles. The switch from a placental oxygenation to pulmonary oxygenation requires that the fluid in the air spaces be rapidly removed from the lung lumen. Recent studies have demonstrated that removal of the alveolar fluid at birth is regulated via endogenous plasma epinephrine in the newborn. Molecular, cellular, and whole animal in vivo studies have demonstrated that fluid absorption at birth is related to expression and function of the epithelial sodium channel (ENaC). Several different in vivo and in vitro preparations have been used to investigate the mechanisms of alveolar fluid transport, primarily in adult lungs and have demonstrated that alveolar fluid absorption is driven by active Na+ transport. Both catecholamine-dependent and -independent regulatory mechanisms have been identified, probably acting on ENaC and other apical sodium channels and/or the basolaterally located Na+, K(+)-ATPase. Future studies are needed to integrate new insights to the molecular mechanisms behind fluid clearance with their function in both normal and pathological lungs.

摘要

在理解出生时肺泡液体清除机制以及从胎盘氧合到空气呼吸转变方面已取得显著进展。在胎儿期,哺乳动物肺是一个充满液体的分泌器官,不具备呼吸功能。其潜在的气腔充满了因氯离子分泌产生的渗透力而主动分泌的液体,充满液体的肺对于呼吸性肺的正常发育是必要的。随着足月临近,氯离子净分泌减少,同时液体分泌到气腔的速率也降低。伴随着氯离子分泌减少,肺泡上皮开始吸收钠离子以准备进行液体吸收和空气呼吸生活。氯离子分泌减少以及钠离子吸收开始的原因尚不清楚。有人提出肺激素环境的改变以及血浆应激激素水平的变化起了作用。从胎盘氧合到肺氧合的转变要求气腔中的液体迅速从肺腔中清除。最近的研究表明,新生儿出生时肺泡液体的清除是由内源性血浆肾上腺素调节的。分子、细胞和全动物体内研究表明,出生时的液体吸收与上皮钠通道(ENaC)的表达和功能有关。已经使用了几种不同的体内和体外制剂来研究肺泡液体转运机制,主要是在成年肺中,并且已经证明肺泡液体吸收是由主动钠离子转运驱动的。已经确定了儿茶酚胺依赖性和非依赖性调节机制,可能作用于ENaC和其他顶端钠通道和/或位于基底外侧的钠钾ATP酶。未来的研究需要将关于液体清除背后分子机制的新见解与其在正常和病理肺中的功能整合起来。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验