Ohta T, Sutton M D, Guzzo A, Cole S, Ferentz A E, Walker G C
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Bacteriol. 1999 Jan;181(1):177-85. doi: 10.1128/JB.181.1.177-185.1999.
The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli, a process that results from a translesion synthesis mechanism. The UmuD protein is activated for its role in mutagenesis by a RecA-facilitated autodigestion that removes the N-terminal 24 amino acids. A previous genetic screen for nonmutable umuD mutants had resulted in the isolation of a set of missense mutants that produced UmuD proteins that were deficient in RecA-mediated cleavage (J. R. Battista, T. Ohta, T. Nohmi, W. Sun, and G. C. Walker, Proc. Natl. Acad. Sci. USA 87:7190-7194, 1990). To identify elements of the UmuD' protein necessary for its role in translesion synthesis, we began with umuD', a modified form of the umuD gene that directly encodes the UmuD' protein, and obtained missense umuD' mutants deficient in UV and methyl methanesulfonate mutagenesis. The D39G, L40R, and T51I mutations affect residues located at the UmuD'2 homodimer interface and interfere with homodimer formation in vivo. The D75A mutation affects a highly conserved residue located at one end of the central strand in a three-stranded beta-sheet and appears to interfere with UmuD'2 homodimer formation indirectly by affecting the structure of the UmuD' monomer. When expressed from a multicopy plasmid, the L40R umuD' mutant gene exhibited a dominant negative effect on a chromosomal umuD+ gene with respect to UV mutagenesis, suggesting that the mutation has an effect on UmuD' function that goes beyond its impairment of homodimer formation. The G129D mutation affects a highly conserved residue that lies at the end of the long C-terminal beta-strand and results in a mutant UmuD' protein that exhibits a strongly dominant negative effect on UV mutagenesis in a umuD+ strain. The A30V and E35K mutations alter residues in the N-terminal arms of the UmuD'2 homodimer, which are mobile in solution.
SOS 调控的 umuDC 操纵子产物是大肠杆菌中大多数紫外线和化学诱变所必需的,这一过程由跨损伤合成机制导致。UmuD 蛋白通过 RecA 促进的自切割作用被激活以发挥其诱变作用,该自切割作用去除了 N 端的 24 个氨基酸。先前针对不可诱变的 umuD 突变体进行的遗传筛选分离出了一组错义突变体,这些突变体产生的 UmuD 蛋白在 RecA 介导的切割方面存在缺陷(J. R. 巴蒂斯塔、T. 太田、T. 野见、W. 孙和 G. C. 沃克,《美国国家科学院院刊》87:7190 - 7194, 1990)。为了鉴定 UmuD' 蛋白在跨损伤合成中发挥作用所必需的元件,我们从 umuD' 开始,umuD' 是 umuD 基因的一种修饰形式,直接编码 UmuD' 蛋白,并获得了在紫外线和甲磺酸甲酯诱变方面存在缺陷的错义 umuD' 突变体。D39G、L40R 和 T51I 突变影响位于 UmuD'2 同型二聚体界面的残基,并在体内干扰同型二聚体的形成。D75A 突变影响位于三链β折叠中央链一端的一个高度保守残基,似乎通过影响 UmuD' 单体的结构间接干扰 UmuD'2 同型二聚体的形成。当从多拷贝质粒表达时,L40R umuD' 突变基因在紫外线诱变方面对染色体上的 umuD + 基因表现出显性负效应,这表明该突变对 UmuD' 功能的影响超出了其对同型二聚体形成的损害。G129D 突变影响位于长 C 端β链末端的一个高度保守残基,并导致突变的 UmuD' 蛋白在 umuD + 菌株中对紫外线诱变表现出强烈的显性负效应。A30V 和 E35K 突变改变了 UmuD'2 同型二聚体 N 端臂中的残基,这些残基在溶液中是可移动的。