Suppr超能文献

知识收集、索引编制和强大语言检索的替代方法。

Alternative ways for knowledge collection, indexing and robust language retrieval.

作者信息

Baud R H, Lovis C, Rassinoux A M, Scherrer J R

机构信息

Division of Medical Informatics, Geneva University Hospital, Switzerland.

出版信息

Methods Inf Med. 1998 Nov;37(4-5):315-26.

PMID:9865029
Abstract

Definitions are provided of the key entities in knowledge representation for Natural Language Processing (NLP). Starting from the words, which are the natural components of any sentence, both the role of expressions and the decomposition of words into their parts are emphasized. This leads to the notion of concepts, which are either primitive or composite depending on the model where they are created. The problem of finding the most adequate degree of granularity for a concept is studied. From this reflection on basic Natural Language Processing components, four categories of linguistic knowledge are recognized, that are considered to be the building blocks of a Medical Linguistic Knowledge Base (MLKB). Following on the tracks of a recent experience in building a natural language-based patient encoding browser, a robust method for conceptual indexing and query of medical texts is presented with particular attention to the scheme of knowledge representation.

摘要

给出了自然语言处理(NLP)知识表示中关键实体的定义。从单词开始,单词是任何句子的自然组成部分,强调了表达式的作用以及单词分解为其组成部分的过程。这引出了概念的概念,根据创建它们的模型,概念可以是原始的或复合的。研究了为一个概念找到最合适粒度程度的问题。基于对基本自然语言处理组件的这种思考,识别出四类语言知识,它们被认为是医学语言知识库(MLKB)的构建块。沿着最近构建基于自然语言的患者编码浏览器的经验轨迹,提出了一种用于医学文本概念索引和查询的强大方法,特别关注知识表示方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验