Depré C, Rider M H, Hue L
Hormone and Metabolic Research Unit, University of Louvain Medical School and Christian de Duve Institute of Cellular Pathology, Brussels, Belgium.
Eur J Biochem. 1998 Dec 1;258(2):277-90. doi: 10.1046/j.1432-1327.1998.2580277.x.
This review focuses on the mechanisms of control of heart glycolysis under conditions of normal and reduced oxygen supply. The kinetic properties and the biochemical characteristics of control steps (glucose transporters, hexokinase, glycogen phosphorylase and phosphofructokinases) in the heart are reviewed in the light of recent findings and are considered together to explain the control of glycolysis by substrate supply and availability, energy demand, oxygen deprivation and hormones. The role of fructose 2,6-bisphosphate in the control of glycolysis is analysed in detail. This regulator participates in the stimulation of heart glycolysis in response to glucose, workload, insulin and adrenaline, and it decreases the glycolytic flux when alternative fuels are oxidized. Fructose 2,6-bisphosphate integrates information from various metabolic and signalling pathways and acts as a glycolytic signal. Moreover, a hierarchy in the control of glycolysis occurs and is evidenced in the presence of adrenaline or cyclic AMP, which relieve the inhibition of glycolysis by alternative fuels and stimulate fatty acid oxidation. Insulin and glucose also stimulate glycolysis, but inhibit fatty acid oxidation. The mechanisms of control underlying this fuel selection are discussed. Finally, the study of the metabolic adaptation of glucose metabolism to oxygen deprivation revealed the implication of nitric oxide and cyclic GMP in the control of heart glucose metabolism.
本综述聚焦于正常和低氧供应条件下心脏糖酵解的调控机制。根据最新研究结果,对心脏中控制步骤(葡萄糖转运体、己糖激酶、糖原磷酸化酶和磷酸果糖激酶)的动力学特性和生化特征进行了综述,并综合考虑这些因素来解释底物供应与可用性、能量需求、缺氧和激素对糖酵解的控制。详细分析了果糖-2,6-二磷酸在糖酵解控制中的作用。该调节剂参与响应葡萄糖、工作负荷、胰岛素和肾上腺素对心脏糖酵解的刺激,并且当氧化替代燃料时会降低糖酵解通量。果糖-2,6-二磷酸整合来自各种代谢和信号通路的信息,并作为一种糖酵解信号发挥作用。此外,糖酵解控制中存在等级体系,在肾上腺素或环磷酸腺苷存在时得到证明,它们可解除替代燃料对糖酵解的抑制并刺激脂肪酸氧化。胰岛素和葡萄糖也刺激糖酵解,但抑制脂肪酸氧化。讨论了这种燃料选择背后的控制机制。最后,对葡萄糖代谢适应缺氧的研究揭示了一氧化氮和环鸟苷酸在心脏葡萄糖代谢控制中的作用。