Auffinger P, Louise-May S, Westhof E
Institut de Biologie Moléculaire et Cellulaire du CNRS, Modélisations et Simulations des Acides Nucléiques, UPR 9002, 67084 Strasbourg Cedex, France.
Biophys J. 1999 Jan;76(1 Pt 1):50-64. doi: 10.1016/S0006-3495(99)77177-8.
Transfer RNA molecules are involved in a variety of biological processes, implying complex recognition events with proteins and other RNAs. From a structural point of view, tRNAs constitute a reference system for studying RNA folding and architecture. A deeper understanding of their structural and functional properties will derive from our ability to model accurately their dynamical behavior. We present the first dynamical model of a fully neutralized and solvated tRNA molecule over a 500-ps time scale. Starting from the crystallographic structure of yeast tRNA(Asp), the 75-nucleotide molecule was modeled with 8055 water molecules and 74 NH4+ counterions, using the AMBER4.1 program and the particle mesh Ewald (PME) method for the treatment of long-range electrostatic interactions. The calculations led to a dynamically stable model of the tRNA molecule. During the simulation, all secondary and tertiary base pairs are maintained while a certain lability of base triples in the tRNA core is observed. This lability was interpreted as resulting from intrinsic factors associated with the "weaker" hydrogen bonding patterns seen in these base triples and from an altered ionic environment of the tRNA molecule. Calculated thermal factors are used to compare the dynamics of the tRNA in solution and in the crystal. The present molecular dynamics simulation of a complex and highly charged nucleic acid molecule attests to the fact that simulation methods are now able to investigate not only the dynamics of proteins, but also that of large RNA molecules. Thus they also provide a basis for further investigations on the structural and functional effects of chemical and posttranscriptionally modified nucleotides as well as on ionic environmental effects.
转运RNA分子参与多种生物学过程,这意味着它们与蛋白质和其他RNA之间存在复杂的识别事件。从结构角度来看,tRNA构成了研究RNA折叠和结构的参考体系。对其结构和功能特性的更深入理解将源于我们精确模拟其动态行为的能力。我们展示了在500皮秒时间尺度上对一个完全中和且溶剂化的tRNA分子的首个动态模型。从酵母tRNA(Asp)的晶体结构出发,使用AMBER4.1程序和粒子网格埃瓦尔德(PME)方法处理长程静电相互作用,对这个75个核苷酸的分子进行建模,其中包含8055个水分子和74个NH4+反离子。计算得出了一个tRNA分子的动态稳定模型。在模拟过程中,所有二级和三级碱基对得以维持,同时观察到tRNA核心区域碱基三联体具有一定的不稳定性。这种不稳定性被解释为源于与这些碱基三联体中“较弱”氢键模式相关的内在因素以及tRNA分子离子环境的改变。计算得到的热因子用于比较tRNA在溶液和晶体中的动态情况。对一个复杂且高电荷核酸分子的当前分子动力学模拟证明,模拟方法现在不仅能够研究蛋白质的动态,还能研究大型RNA分子的动态。因此,它们也为进一步研究化学修饰和转录后修饰核苷酸的结构和功能效应以及离子环境效应提供了基础。