Suppr超能文献

森林演替模型中个体树木和斑块的聚集:通过高度结构化、随机的空间分布捕捉变异性。

Aggregation of individual trees and patches in forest succession models: capturing variability with height structured, random, spatial distributions.

作者信息

Lischke H, Löffler T J, Fischlin A

机构信息

Systems Ecology, Institute of Terrestrial Ecology, Department of Environmental Sciences, Swiss Federal Institute of Technology Z urich (ETHZ), Grabenstrasse 3, Schlieren, CH-8952, Switzerland.

出版信息

Theor Popul Biol. 1998 Dec;54(3):213-26. doi: 10.1006/tpbi.1998.1378.

Abstract

Individual based, stochastic forest patch models have the potential to realistically describe forest dynamics. However, they are mathematically intransparent and need long computing times. We simplified such a forest patch model by aggregating the individual trees on many patches to height-structured tree populations with theoretical random dispersions over the whole simulated forest area. The resulting distribution-based model produced results similar to those of the patch model under a wide range of conditions. We concluded that the height- structured tree dispersion is an adequate population descriptor to capture the stochastic variability in a forest and that the new approach is generally applicable to any patch model. The simplified model required only 4.1% of the computing time needed by the patch model. Hence, this new model type is well-suited for applications where a large number of dynamic forest simulations is required.

摘要

基于个体的随机森林斑块模型有潜力逼真地描述森林动态。然而,它们在数学上不透明,且计算时间长。我们通过将许多斑块上的单株树木聚合为高度结构化的树种群,且在整个模拟森林区域具有理论随机扩散,从而简化了这样一个森林斑块模型。由此产生的基于分布的模型在广泛条件下产生的结果与斑块模型相似。我们得出结论,高度结构化的树木扩散是捕捉森林中随机变异性的一个充分的种群描述符,并且新方法通常适用于任何斑块模型。简化模型所需的计算时间仅为斑块模型的4.1%。因此,这种新的模型类型非常适合需要大量动态森林模拟的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验