Suppr超能文献

为计算机设计的肽申请专利。

Patenting computer-designed peptides.

作者信息

Patel S, Stott I P, Bhakoo M, Elliott P

机构信息

Unilever Research, Port Sunlight Laboratory, Wirral, U.K.

出版信息

J Comput Aided Mol Des. 1998 Nov;12(6):543-56. doi: 10.1023/a:1008095802767.

Abstract

The problem of designing new peptides that possess specific properties, such as bactericidal activity, is of wide interest. Recently, attention has focused on the use of Computer-Aided Molecular Design techniques in parallel with more traditional 'synthesise and test' methods. These techniques may typically use Genetic Algorithms to optimise molecules based on Neural Network models that predict activity. In this paper we describe a successful application of this Molecular Design methodology that has resulted in novel bactericidal peptides of real value. A key issue for commercial utilisation of such results is the ability to protect the intellectual property rights associated with the discovery of new molecules. Typically peptide patents use structural templates of amino acid hydrophobicity-hydrophilicity that define highly regular peptide patent spaces. In an extension of established patenting practice we describe a patent application that uses a Neural Net predictive model to define the regions of peptide space that we claim within the patent. This formalism makes no a priori assumptions about the regularity of the patent space. A preliminary comparative investigation of the shape and size of this and other bactericidal peptide patent spaces is conducted.

摘要

设计具有特定性质(如杀菌活性)的新型肽的问题备受关注。最近,人们的注意力集中在将计算机辅助分子设计技术与更传统的“合成与测试”方法并行使用。这些技术通常可能会使用遗传算法,基于预测活性的神经网络模型来优化分子。在本文中,我们描述了这种分子设计方法的一个成功应用,该应用产生了具有实际价值的新型杀菌肽。此类结果商业化利用的一个关键问题是保护与新分子发现相关的知识产权的能力。通常,肽专利使用定义高度规则肽专利空间的氨基酸疏水性 - 亲水性结构模板。在对既定专利实践的扩展中,我们描述了一项专利申请,该申请使用神经网络预测模型来定义我们在专利中主张的肽空间区域。这种形式主义对专利空间的规律性不做先验假设。我们对该杀菌肽专利空间以及其他杀菌肽专利空间的形状和大小进行了初步比较研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验