Kauffman S A, Macready W G
Sante Fe Institute, NM 87501, USA.
J Theor Biol. 1995 Apr 21;173(4):427-40. doi: 10.1006/jtbi.1995.0074.
A new approach to drug discovery is based on the generation of high diversity libraries of DNA, RNA, peptides or small molecules. Search of such libraries for useful molecules is an optimization problem on high-dimensional molecular fitness landscapes. We utilize a spin-glass-like model, the NK model, to analyze search strategies based on pooling, mutation, recombination and selective hill-climbing. Our results suggest that pooling followed by recombination and/or hill-climbing finds better candidate molecules than pooling alone on most molecular landscapes. Our results point to new experiments to assess the structure of molecular fitness landscapes and improve current models.
一种新的药物发现方法基于生成DNA、RNA、肽或小分子的高度多样化文库。在这些文库中搜索有用分子是高维分子适应性景观上的一个优化问题。我们利用一种类似自旋玻璃的模型——NK模型,来分析基于混合、突变、重组和选择性爬山的搜索策略。我们的结果表明,在大多数分子景观上,先进行混合然后进行重组和/或爬山比单独混合能找到更好的候选分子。我们的结果指出了新的实验方向,以评估分子适应性景观的结构并改进当前模型。