College of Computer Science and Technology, Ocean University of China, 238 Songling Rd, 266100 Shandong, China.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae444.
Using amino acid residues in peptide generation has solved several key problems, including precise control of amino acid sequence order, customized peptides for property modification, and large-scale peptide synthesis. Proteins contain unknown amino acid residues. Extracting them for the synthesis of drug-like peptides can create novel structures with unique properties, driving drug development. Computer-aided design of novel peptide drug molecules can solve the high-cost and low-efficiency problems in the traditional drug discovery process. Previous studies faced limitations in enhancing the bioactivity and drug-likeness of polypeptide drugs due to less emphasis on the connection relationships in amino acid structures. Thus, we proposed a reinforcement learning-driven generation model based on graph attention mechanisms for peptide generation. By harnessing the advantages of graph attention mechanisms, this model effectively captured the connectivity structures between amino acid residues in peptides. Simultaneously, leveraging reinforcement learning's strength in guiding optimal sequence searches provided a novel approach to peptide design and optimization. This model introduces an actor-critic framework with real-time feedback loops to achieve dynamic balance between attributes, which can customize the generation of multiple peptides for specific targets and enhance the affinity between peptides and targets. Experimental results demonstrate that the generated drug-like peptides meet specified absorption, distribution, metabolism, excretion, and toxicity properties and bioactivity with a success rate of over 90$%$, thereby significantly accelerating the process of drug-like peptide generation.
利用肽生成中的氨基酸残基解决了几个关键问题,包括精确控制氨基酸序列顺序、定制用于性质修饰的肽以及大规模肽合成。蛋白质中含有未知的氨基酸残基。提取它们用于合成类药性肽可以创造具有独特性质的新型结构,推动药物开发。新型肽药物分子的计算机辅助设计可以解决传统药物发现过程中成本高、效率低的问题。由于以前的研究较少关注氨基酸结构中的连接关系,因此在增强多肽药物的生物活性和类药性方面存在局限性。因此,我们提出了一种基于图注意力机制的强化学习驱动的肽生成生成模型。通过利用图注意力机制的优势,该模型有效地捕获了肽中氨基酸残基之间的连接结构。同时,利用强化学习在指导最优序列搜索方面的优势,为肽设计和优化提供了一种新方法。该模型引入了一个带有实时反馈循环的演员-评论家框架,以在属性之间实现动态平衡,从而可以为特定目标定制生成多个肽,并增强肽与目标之间的亲和力。实验结果表明,生成的类药性肽满足指定的吸收、分布、代谢、排泄和毒性特性和生物活性,成功率超过 90$%$,从而显著加速了类药性肽的生成过程。