Suppr超能文献

抗菌肽活性关系的稀疏神经网络模型

Sparse Neural Network Models of Antimicrobial Peptide-Activity Relationships.

作者信息

Müller Alex T, Kaymaz Aral C, Gabernet Gisela, Posselt Gernot, Wessler Silja, Hiss Jan A, Schneider Gisbert

机构信息

Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland.

Department of Molecular Biology, Division of Microbiology, Paris Lodron, University of Salzburg, Billrothstr. 11, A-5020, Salzburg, Austria.

出版信息

Mol Inform. 2016 Dec;35(11-12):606-614. doi: 10.1002/minf.201600029. Epub 2016 Jul 11.

Abstract

We present an adaptive neural network model for chemical data classification. The method uses an evolutionary algorithm for optimizing the network structure by seeking sparsely connected architectures. The number of hidden layers, the number of neurons in each layer and their connectivity are free variables of the system. We used the method for predicting antimicrobial peptide activity from the amino acid sequence. Visualization of the evolved sparse network structures suggested a high charge density and a low aggregation potential in solution as beneficial for antimicrobial activity. However, different training data sets and peptide representations resulted in greatly varying network structures. Overall, the sparse network models turned out to be less accurate than fully-connected networks. In a prospective application, we synthesized and tested 10 de novo generated peptides that were predicted to either possess antimicrobial activity, or to be inactive. Two of the predicted antibacterial peptides showed cosiderable bacteriostatic effects against both Staphylococcus aureus and Escherichia coli. None of the predicted inactive peptides possessed antibacterial properties. Molecular dynamics simulations of selected peptide structures in water and TFE suggest a pronounced peptide helicity in a hydrophobic environment. The results of this study underscore the applicability of neural networks for guiding the computer-assisted design of new peptides with desired properties.

摘要

我们提出了一种用于化学数据分类的自适应神经网络模型。该方法使用进化算法,通过寻找稀疏连接的架构来优化网络结构。隐藏层的数量、每层中的神经元数量及其连接性是系统的自由变量。我们使用该方法从氨基酸序列预测抗菌肽活性。对进化出的稀疏网络结构的可视化表明,溶液中高电荷密度和低聚集潜力有利于抗菌活性。然而,不同的训练数据集和肽表示导致网络结构有很大差异。总体而言,稀疏网络模型的准确性不如全连接网络。在一个前瞻性应用中,我们合成并测试了10种从头生成的肽,这些肽被预测要么具有抗菌活性,要么无活性。两种预测的抗菌肽对金黄色葡萄球菌和大肠杆菌均显示出相当大的抑菌作用。预测的无活性肽均不具有抗菌特性。在水和三氟乙醇中对选定肽结构的分子动力学模拟表明,在疏水环境中肽具有明显的螺旋性。这项研究的结果强调了神经网络在指导具有所需特性的新肽的计算机辅助设计方面的适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验