Gowda A, Yang C, Asimakis G K, Rastegar S, Motamedi M
Biomedical Engineering Center, Department of Surgery, The University of Texas Medical Branch, Galveston 77555, USA.
Ann Thorac Surg. 1998 Dec;66(6):1991-7. doi: 10.1016/s0003-4975(98)00905-9.
Improved methods of donor heart preparation before preservation could allow for prolonged storage and permit remote procurement of these organs. Previous studies have shown that overexpression of heat-shock protein 72 provides protection against ischemic cardiac damage. We sought to determine whether rats subjected to heat stress with only 6-hour recovery could acquire protection to a subsequent heart storage for 12 hours at 4 degrees C.
Three groups of animals (n = 10 each) were studied: control, sham-treated, and heat-shocked rats (whole-body hyperthermia 42 degrees C for 15 minutes). After 12-hour cold ischemia hearts were reperfused on a Langendorff column. To confirm any differences in functional recovery, hearts were then subjected to an additional 15-minute period of warm global ischemia after which function and lactate dehydrogenase enzyme leakage were measured.
Heat-shocked animals showed marked improvements compared with controls in left ventricular developed pressure (63+/-4 mm Hg versus 44+/-4 mm Hg, p<0.05) heart rate x developed pressure (13,883+/-1,174 beats per minute x mm Hg versus 8,492+/-1,564 beats per minute x mm Hg, p<0.05), rate of ventricular pressure increase (1,912+/-112 mm Hg/second versus 1,215+/-162 mm Hg/second, p<0.005), rate of ventricular pressure decrease (1,258+/-89 mm Hg/second versus 774+/-106 mm Hg/second, p<0.005). Diastolic compliance and lactate dehydrogenase release were improved in heatshocked animals compared with controls and sham-treated animals. Differences between heat-shocked animals and control or sham-treated animals were further increased after the additional 15-minute period of warm ischemia. Western blot experiments confirmed increased heat-shock protein 72 levels in heat-shocked animals (>threefold) compared with sham-treated animals and controls.
Heat shock 6 hours before heart removal resulted in marked expression of heat-shock protein 72 and protected isolated rat hearts by increased functional recovery and decreased cellular necrosis after 12-hour cold ischemia in a protocol mimicking that of heart preservation for transplantation. Protection was further confirmed after an additional 15-minute period of warm ischemia.