Suppr超能文献

脑电图中周期性复合波潜在动力学的研究。

Investigation of the dynamics underlying periodic complexes in the EEG.

作者信息

Stam C J, Vliegen J H, Nicolai J

机构信息

Department of Neurology and Clinical Neurophysiology, Leyenburg Hospital, The Hague, The Netherlands.

出版信息

Biol Cybern. 1999 Jan;80(1):57-69. doi: 10.1007/s004220050504.

Abstract

Periodic complexes (PC), occurring lateralised or diffuse, are relatively rare EEG phenomena which reflect acute severe brain disease. The pathophysiology is still incompletely understood. One hypothesis suggested by the alpha rhythm model of Lopes da Silva is that periodic complexes reflect limit cycle dynamics of cortical networks caused by excessive excitatory feedback. We examined this hypothesis by applying a recently developed technique to EEGs displaying periodic complexes and to periodic complexes generated by the model. The technique, non-linear cross prediction, characterises how well a time series can be predicted, and how much amplitude and time asymmetry is present. Amplitude and time asymmetry are indications of non-linearity. In accordance with the model, most EEG channels with PC showed clear evidence of amplitude and time asymmetry, pointing to non-linear dynamics. However, the non-linear predictability of true PC was substantially lower than that of PC generated by the model. Furthermore, no finite value for the correlation dimension could be obtained for the real EEG data, whereas the model time series had a dimension slighter higher than one, consistent with a limit cycle attractor. Thus we can conclude that PC reflect non-linear dynamics, but a limit cycle attractor is too simple an explanation. The possibility of more complex (high dimensional and spatio-temporal) non-linear dynamics should be investigated.

摘要

周期性复合波(PC),呈单侧化或弥漫性出现,是相对罕见的脑电图现象,反映急性重症脑部疾病。其病理生理学仍未完全明确。洛佩斯·达席尔瓦的α节律模型提出的一种假说认为,周期性复合波反映了由过度兴奋性反馈引起的皮质网络的极限环动力学。我们通过将一种最近开发的技术应用于显示周期性复合波的脑电图以及该模型生成的周期性复合波来检验这一假说。该技术,即非线性交叉预测,表征了一个时间序列的可预测程度以及存在多少幅度和时间不对称性。幅度和时间不对称性是非线性的指标。与该模型一致,大多数有PC的脑电图通道显示出明显的幅度和时间不对称证据,表明存在非线性动力学。然而,真实PC的非线性可预测性明显低于该模型生成的PC。此外,对于真实的脑电图数据无法获得相关维数的有限值,而模型时间序列的维数略高于1,与极限环吸引子一致。因此我们可以得出结论,PC反映非线性动力学,但极限环吸引子的解释过于简单。应研究更复杂(高维和时空)非线性动力学的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验