Suppr超能文献

基于神经团模型的非线性脑电图分析。

Nonlinear EEG analysis based on a neural mass model.

作者信息

Valdes P A, Jimenez J C, Riera J, Biscay R, Ozaki T

机构信息

Cuban Neuroscience Center (CNIC), P.O.Box 6880, Havana, Cuba.

出版信息

Biol Cybern. 1999 Nov;81(5-6):415-24. doi: 10.1007/s004220050572.

Abstract

The well-known neural mass model described by Lopes da Silva et al. (1976) and Zetterberg et al. (1978) is fitted to actual EEG data. This is achieved by reformulating the original set of integral equations as a continuous-discrete state space model. The local linearization approach is then used to discretize the state equation and to construct a nonlinear Kalman filter. On this basis, a maximum likelihood procedure is used for estimating the model parameters for several EEG recordings. The analysis of the noise-free differential equations of the estimated models suggests that there are two different types of alpha rhythms: those with a point attractor and others with a limit cycle attractor. These attractors are also found by means of a nonlinear time series analysis of the EEG recordings. We conclude that the Hopf bifurcation described by Zetterberg et al. (1978) is present in actual brain dynamics.

摘要

由洛佩斯·达席尔瓦等人(1976年)和泽特贝里等人(1978年)描述的著名神经团模型被拟合到实际脑电图数据中。这是通过将原始的积分方程组重新表述为连续离散状态空间模型来实现的。然后使用局部线性化方法对状态方程进行离散化,并构建一个非线性卡尔曼滤波器。在此基础上,采用最大似然法对多个脑电图记录的模型参数进行估计。对估计模型的无噪声微分方程的分析表明,存在两种不同类型的阿尔法节律:具有点吸引子的和具有极限环吸引子的。通过对脑电图记录进行非线性时间序列分析也发现了这些吸引子。我们得出结论,泽特贝里等人(1978年)描述的霍普夫分岔存在于实际脑动力学中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验