Valdes P A, Jimenez J C, Riera J, Biscay R, Ozaki T
Cuban Neuroscience Center (CNIC), P.O.Box 6880, Havana, Cuba.
Biol Cybern. 1999 Nov;81(5-6):415-24. doi: 10.1007/s004220050572.
The well-known neural mass model described by Lopes da Silva et al. (1976) and Zetterberg et al. (1978) is fitted to actual EEG data. This is achieved by reformulating the original set of integral equations as a continuous-discrete state space model. The local linearization approach is then used to discretize the state equation and to construct a nonlinear Kalman filter. On this basis, a maximum likelihood procedure is used for estimating the model parameters for several EEG recordings. The analysis of the noise-free differential equations of the estimated models suggests that there are two different types of alpha rhythms: those with a point attractor and others with a limit cycle attractor. These attractors are also found by means of a nonlinear time series analysis of the EEG recordings. We conclude that the Hopf bifurcation described by Zetterberg et al. (1978) is present in actual brain dynamics.
由洛佩斯·达席尔瓦等人(1976年)和泽特贝里等人(1978年)描述的著名神经团模型被拟合到实际脑电图数据中。这是通过将原始的积分方程组重新表述为连续离散状态空间模型来实现的。然后使用局部线性化方法对状态方程进行离散化,并构建一个非线性卡尔曼滤波器。在此基础上,采用最大似然法对多个脑电图记录的模型参数进行估计。对估计模型的无噪声微分方程的分析表明,存在两种不同类型的阿尔法节律:具有点吸引子的和具有极限环吸引子的。通过对脑电图记录进行非线性时间序列分析也发现了这些吸引子。我们得出结论,泽特贝里等人(1978年)描述的霍普夫分岔存在于实际脑动力学中。